DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparing GGA, GGA+ U , and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks

Abstract

Metal–organic frameworks (MOFs) with open metal sites have been widely investigated for the selective adsorption of small molecules via redox mechanisms where charge transfer can take place between the binding site and the adsorbate of interest. Quantum-chemical screening methods based on density functional theory have emerged as a promising route to accelerate the discovery of MOFs with enhanced binding affinities toward various adsorbates. However, the success of this approach is linked to the accuracy of the underlying density functional approximations (DFAs). In this work, we compare commonly used generalized gradient approximation (GGA), GGA+U, and meta-GGA exchange-correlation functionals in modeling redox-dependent binding at open metal sites in MOFs using O2 and N2 as representative small molecules. We find that the self-interaction error inherent to the widely used Perdew, Burke, and Ernzerhof (PBE) GGA predicts metal sites that are artificially redox-active, as evidenced by their strong binding affinities, short metal–adsorbate bond distances, and large degree of charge transfer. The incorporation of metal-specific, empirical Hubbard U corrections based on the transition metal oxide literature systematically reduces the redox activity of the open metal sites, often improving agreement with experiment. Additionally, the binding behavior shifts from strong chemisorption to weaker physisorption as a functionmore » of U. The M06-L meta-GGA typically predicts binding energies between those of PBE-D3(BJ) and PBE-D3(BJ)+U when using empirically derived U values from the transition metal oxide literature. Despite the strong sensitivity of the binding affinities toward a given DFA, the GGA, GGA+U, and meta-GGA approaches often yield the same qualitative trends and structure–property relationships.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Northwestern Univ., Evanston, IL (United States)
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1800088
Alternate Identifier(s):
OSTI ID: 1632231
Grant/Contract Number:  
FG02-03ER15457
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 152; Journal Issue: 22; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Physics; Chemisorption; Redox reactions; Generalized gradient approximations; Electrostatics; Crystalline solids; Exchange correlation functionals; Charge transfer; Delocalization; Density functional theory; Adsorption

Citation Formats

Rosen, Andrew S., Notestein, Justin M., and Snurr, Randall Q. Comparing GGA, GGA+ U , and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks. United States: N. p., 2020. Web. doi:10.1063/5.0010166.
Rosen, Andrew S., Notestein, Justin M., & Snurr, Randall Q. Comparing GGA, GGA+ U , and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks. United States. https://doi.org/10.1063/5.0010166
Rosen, Andrew S., Notestein, Justin M., and Snurr, Randall Q. Sun . "Comparing GGA, GGA+ U , and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks". United States. https://doi.org/10.1063/5.0010166. https://www.osti.gov/servlets/purl/1800088.
@article{osti_1800088,
title = {Comparing GGA, GGA+ U , and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks},
author = {Rosen, Andrew S. and Notestein, Justin M. and Snurr, Randall Q.},
abstractNote = {Metal–organic frameworks (MOFs) with open metal sites have been widely investigated for the selective adsorption of small molecules via redox mechanisms where charge transfer can take place between the binding site and the adsorbate of interest. Quantum-chemical screening methods based on density functional theory have emerged as a promising route to accelerate the discovery of MOFs with enhanced binding affinities toward various adsorbates. However, the success of this approach is linked to the accuracy of the underlying density functional approximations (DFAs). In this work, we compare commonly used generalized gradient approximation (GGA), GGA+U, and meta-GGA exchange-correlation functionals in modeling redox-dependent binding at open metal sites in MOFs using O2 and N2 as representative small molecules. We find that the self-interaction error inherent to the widely used Perdew, Burke, and Ernzerhof (PBE) GGA predicts metal sites that are artificially redox-active, as evidenced by their strong binding affinities, short metal–adsorbate bond distances, and large degree of charge transfer. The incorporation of metal-specific, empirical Hubbard U corrections based on the transition metal oxide literature systematically reduces the redox activity of the open metal sites, often improving agreement with experiment. Additionally, the binding behavior shifts from strong chemisorption to weaker physisorption as a function of U. The M06-L meta-GGA typically predicts binding energies between those of PBE-D3(BJ) and PBE-D3(BJ)+U when using empirically derived U values from the transition metal oxide literature. Despite the strong sensitivity of the binding affinities toward a given DFA, the GGA, GGA+U, and meta-GGA approaches often yield the same qualitative trends and structure–property relationships.},
doi = {10.1063/5.0010166},
journal = {Journal of Chemical Physics},
number = 22,
volume = 152,
place = {United States},
year = {Sun Jun 14 00:00:00 EDT 2020},
month = {Sun Jun 14 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Validation of Exchange−Correlation Functionals for Spin States of Iron Complexes
journal, June 2004

  • Swart, Marcel; Groenhof, André R.; Ehlers, Andreas W.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 25
  • DOI: 10.1021/jp049043i

Where Does the Density Localize in the Solid State? Divergent Behavior for Hybrids and DFT+U
journal, January 2018

  • Zhao, Qing; Kulik, Heather J.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 2
  • DOI: 10.1021/acs.jctc.7b01061

Drastic Enhancement of Catalytic Activity via Post-oxidation of a Porous Mn II Triazolate Framework
journal, July 2014

  • Liao, Pei-Qin; Li, Xu-Yu; Bai, Jie
  • Chemistry - A European Journal, Vol. 20, Issue 36
  • DOI: 10.1002/chem.201403123

Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O 2 Binding: Design Rules and Ambient Temperature O 2 Chemisorption in a Cobalt–Triazolate Framework
journal, February 2020

  • Rosen, Andrew S.; Mian, M. Rasel; Islamoglu, Timur
  • Journal of the American Chemical Society, Vol. 142, Issue 9
  • DOI: 10.1021/jacs.9b12401

Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites
journal, December 2016

  • Yoon, Ji Woong; Chang, Hyunju; Lee, Seung-Joon
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4825

Benchmarking of GGA density functionals for modeling structures of nanoporous, rigid and flexible MOFs
journal, August 2018

  • Formalik, Filip; Fischer, Michael; Rogacka, Justyna
  • The Journal of Chemical Physics, Vol. 149, Issue 6
  • DOI: 10.1063/1.5030493

Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks
journal, January 2019

  • Hall, Jacklyn N.; Bollini, Praveen
  • Reaction Chemistry & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8re00228b

An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials
journal, December 2016

  • Zhai, Quan-Guo; Bu, Xianhui; Mao, Chengyu
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13645

A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future
journal, March 2017


Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework
journal, January 2006

  • Dietzel, Pascal D. C.; Panella, Barbara; Hirscher, Michael
  • Chemical Communications, Issue 9
  • DOI: 10.1039/b515434k

Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design
journal, January 2015

  • Lee, Kyuho; Howe, Joshua D.; Lin, Li-Chiang
  • Chemistry of Materials, Vol. 27, Issue 3, p. 668-678
  • DOI: 10.1021/cm502760q

Spinning around in Transition-Metal Chemistry
journal, November 2016


Perspective: Treating electron over-delocalization with the DFT+U method
journal, June 2015

  • Kulik, Heather J.
  • The Journal of Chemical Physics, Vol. 142, Issue 24
  • DOI: 10.1063/1.4922693

Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation
journal, March 2019

  • Rosen, Andrew S.; Notestein, Justin M.; Snurr, Randall Q.
  • ACS Catalysis, Vol. 9, Issue 4
  • DOI: 10.1021/acscatal.8b05178

Selective Binding of O 2 over N 2 in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites
journal, September 2011

  • Bloch, Eric D.; Murray, Leslie J.; Queen, Wendy L.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205976v

Metal–dioxygen and metal–dinitrogen complexes: where are the electrons?
journal, January 2010

  • Holland, Patrick L.
  • Dalton Transactions, Vol. 39, Issue 23
  • DOI: 10.1039/c001397h

Assessments of Semilocal Density Functionals and Corrections for Carbon Dioxide Adsorption on Metal-Organic Frameworks
journal, August 2014


First-Principles Study of Microporous Magnets M-MOF-74 (M = Ni, Co, Fe, Mn): the Role of Metal Centers
journal, August 2013

  • Zhang, Qiuju; Li, Baihai; Chen, Liang
  • Inorganic Chemistry, Vol. 52, Issue 16
  • DOI: 10.1021/ic400927m

Computational screening study towards redox-active metal-organic frameworks
journal, November 2013


Mn 2 (2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (−Mn–S−) Chains and High Intrinsic Charge Mobility
journal, May 2013

  • Sun, Lei; Miyakai, Tomoyo; Seki, Shu
  • Journal of the American Chemical Society, Vol. 135, Issue 22
  • DOI: 10.1021/ja4037516

Does DFT+U mimic hybrid density functionals?
journal, July 2016


Reversible Capture and Release of Cl 2 and Br 2 with a Redox-Active Metal–Organic Framework
journal, April 2017

  • Tulchinsky, Yuri; Hendon, Christopher H.; Lomachenko, Kirill A.
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b02161

Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn)
journal, January 2013

  • Geier, Stephen J.; Mason, Jarad A.; Bloch, Eric D.
  • Chemical Science, Vol. 4, Issue 5
  • DOI: 10.1039/c3sc00032j

Insights into Current Limitations of Density Functional Theory
journal, August 2008


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Simulation of Heme Using DFT + U:  A Step toward Accurate Spin-State Energetics
journal, June 2007

  • Scherlis, Damián A.; Cococcioni, Matteo; Sit, Patrick
  • The Journal of Physical Chemistry B, Vol. 111, Issue 25, p. 7384-7391
  • DOI: 10.1021/jp070549l

Where Does the Density Localize? Convergent Behavior for Global Hybrids, Range Separation, and DFT+U
journal, November 2016

  • Gani, Terry Z. H.; Kulik, Heather J.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 12
  • DOI: 10.1021/acs.jctc.6b00937

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals
journal, April 2017


Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials
journal, January 2016

  • Limas, Nidia Gabaldon; Manz, Thomas A.
  • RSC Advances, Vol. 6, Issue 51
  • DOI: 10.1039/c6ra05507a

Air Separation by Catechol-Ligated Transition Metals: A Quantum Chemical Screening
journal, May 2018

  • Stoneburner, Samuel J.; Gagliardi, Laura
  • The Journal of Physical Chemistry C, Vol. 122, Issue 39
  • DOI: 10.1021/acs.jpcc.8b03599

Bioinorganic Chemistry Modeled with the TPSSh Density Functional
journal, November 2008


First-principles Hubbard U approach for small molecule binding in metal-organic frameworks
journal, May 2016

  • Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo
  • The Journal of Chemical Physics, Vol. 144, Issue 17
  • DOI: 10.1063/1.4947240

The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648x/aa680e

CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations
journal, May 2008

  • Huang, Min; Fabris, Stefano
  • The Journal of Physical Chemistry C, Vol. 112, Issue 23
  • DOI: 10.1021/jp709898r

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Many-electron self-interaction error in approximate density functionals
journal, November 2006

  • Mori-Sánchez, Paula; Cohen, Aron J.; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 125, Issue 20
  • DOI: 10.1063/1.2403848

Million-Fold Electrical Conductivity Enhancement in Fe 2 (DEBDC) versus Mn 2 (DEBDC) (E = S, O)
journal, May 2015

  • Sun, Lei; Hendon, Christopher H.; Minier, Mikael A.
  • Journal of the American Chemical Society, Vol. 137, Issue 19
  • DOI: 10.1021/jacs.5b02897

Hydroxide Ligands Cooperate with Catalytic Centers in Metal–Organic Frameworks for Efficient Photocatalytic CO 2 Reduction
journal, December 2017

  • Wang, Yu; Huang, Ning-Yu; Shen, Jian-Qiang
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b10107

An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution
journal, June 2016

  • Lu, Xue-Feng; Liao, Pei-Qin; Wang, Jia-Wei
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b03125

Hydrogen Storage and Selective, Reversible O 2 Adsorption in a Metal-Organic Framework with Open Chromium(II) Sites
journal, June 2016

  • Bloch, Eric D.; Queen, Wendy L.; Hudson, Matthew R.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201602950

Direct minimization technique for metals in density functional theory
journal, June 2009


Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

Identifying promising metal–organic frameworks for heterogeneous catalysis via high‐throughput periodic density functional theory
journal, February 2019

  • Rosen, Andrew S.; Notestein, Justin M.; Snurr, Randall Q.
  • Journal of Computational Chemistry, Vol. 40, Issue 12
  • DOI: 10.1002/jcc.25787

Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities
journal, October 2018

  • Vogiatzis, Konstantinos D.; Polynski, Mikhail V.; Kirkland, Justin K.
  • Chemical Reviews, Vol. 119, Issue 4
  • DOI: 10.1021/acs.chemrev.8b00361

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Perspective on density functional theory
journal, April 2012

  • Burke, Kieron
  • The Journal of Chemical Physics, Vol. 136, Issue 15
  • DOI: 10.1063/1.4704546

Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications
journal, September 2017

  • Colón, Yamil J.; Gómez-Gualdrón, Diego A.; Snurr, Randall Q.
  • Crystal Growth & Design, Vol. 17, Issue 11
  • DOI: 10.1021/acs.cgd.7b00848

A spin transition mechanism for cooperative adsorption in metal–organic frameworks
journal, September 2017

  • Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia
  • Nature, Vol. 550, Issue 7674
  • DOI: 10.1038/nature23674

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Selective, Tunable O 2 Binding in Cobalt(II)–Triazolate/Pyrazolate Metal–Organic Frameworks
journal, May 2016

  • Xiao, Dianne J.; Gonzalez, Miguel I.; Darago, Lucy E.
  • Journal of the American Chemical Society, Vol. 138, Issue 22
  • DOI: 10.1021/jacs.6b03680