DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes

Abstract

Abstract In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4 m concentrated LiNO 3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO 3 ions and their participation in the primary Li + solvation sheath, abundant Li 2 O, Li 3 N, and LiN x O y grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF 6 ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm −2 , 1.0 mAh cm −2 ) and the electrolyte also enables a Li||LiNi 0.8 Co 0.1 Mn 0.1 O 2more » (NMC811) full cell (2.5 mAh cm −2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2]; ORCiD logo [1]
  1. Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20740 USA
  2. State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science&, Engineering Zhejiang University Hangzhou 310027 China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1786223
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 133 Journal Issue: 7; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Liu, Sufu, Ji, Xiao, Piao, Nan, Chen, Ji, Eidson, Nico, Xu, Jijian, Wang, Pengfei, Chen, Long, Zhang, Jiaxun, Deng, Tao, Hou, Singyuk, Jin, Ting, Wan, Hongli, Li, Jingru, Tu, Jiangping, and Wang, Chunsheng. An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes. Germany: N. p., 2020. Web. doi:10.1002/ange.202012005.
Liu, Sufu, Ji, Xiao, Piao, Nan, Chen, Ji, Eidson, Nico, Xu, Jijian, Wang, Pengfei, Chen, Long, Zhang, Jiaxun, Deng, Tao, Hou, Singyuk, Jin, Ting, Wan, Hongli, Li, Jingru, Tu, Jiangping, & Wang, Chunsheng. An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes. Germany. https://doi.org/10.1002/ange.202012005
Liu, Sufu, Ji, Xiao, Piao, Nan, Chen, Ji, Eidson, Nico, Xu, Jijian, Wang, Pengfei, Chen, Long, Zhang, Jiaxun, Deng, Tao, Hou, Singyuk, Jin, Ting, Wan, Hongli, Li, Jingru, Tu, Jiangping, and Wang, Chunsheng. Wed . "An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes". Germany. https://doi.org/10.1002/ange.202012005.
@article{osti_1786223,
title = {An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes},
author = {Liu, Sufu and Ji, Xiao and Piao, Nan and Chen, Ji and Eidson, Nico and Xu, Jijian and Wang, Pengfei and Chen, Long and Zhang, Jiaxun and Deng, Tao and Hou, Singyuk and Jin, Ting and Wan, Hongli and Li, Jingru and Tu, Jiangping and Wang, Chunsheng},
abstractNote = {Abstract In carbonate electrolytes, the organic–inorganic solid electrolyte interphase (SEI) formed on the Li‐metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic‐rich SEI is designed on a Li‐metal surface to reduce its bonding energy with Li metal by dissolving 4 m concentrated LiNO 3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene‐carbonate (FEC)‐based electrolyte. Due to the aggregate structure of NO 3 − ions and their participation in the primary Li + solvation sheath, abundant Li 2 O, Li 3 N, and LiN x O y grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF 6 − ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm −2 , 1.0 mAh cm −2 ) and the electrolyte also enables a Li||LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NMC811) full cell (2.5 mAh cm −2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.},
doi = {10.1002/ange.202012005},
journal = {Angewandte Chemie},
number = 7,
volume = 133,
place = {Germany},
year = {Wed Dec 16 00:00:00 EST 2020},
month = {Wed Dec 16 00:00:00 EST 2020}
}

Works referenced in this record:

Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
journal, January 2018


Synergistic Dual‐Additive Electrolyte Enables Practical Lithium‐Metal Batteries
journal, June 2020

  • Li, Siyuan; Zhang, Weidong; Wu, Qiang
  • Angewandte Chemie International Edition, Vol. 59, Issue 35
  • DOI: 10.1002/anie.202004853

Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and In Situ Pressure Analysis Study
journal, April 2018

  • Schweidler, Simon; de Biasi, Lea; Schiele, Alexander
  • The Journal of Physical Chemistry C, Vol. 122, Issue 16
  • DOI: 10.1021/acs.jpcc.8b01873

High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries
journal, January 2020

  • Liu, Sufu; Ji, Xiao; Yue, Jie
  • Journal of the American Chemical Society, Vol. 142, Issue 5
  • DOI: 10.1021/jacs.9b11750

Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
journal, December 2018


Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate–Ether Mixed Electrolyte
journal, May 2017


Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite
journal, May 2019


The electrochemical behavior of selected polar aprotic systems
journal, February 1989


Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives
journal, October 2018

  • Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier
  • Angewandte Chemie International Edition, Vol. 57, Issue 46
  • DOI: 10.1002/anie.201712702

Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries
journal, September 2019


A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation
journal, October 2018


Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes
journal, March 2018

  • Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201801513

Effects of Fluoroethylene Carbonate (FEC) on Anode and Cathode Interfaces at Elevated Temperatures
journal, January 2015

  • Shin, Hosop; Park, Jonghyun; Sastry, Ann Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 9
  • DOI: 10.1149/2.0071509jes

Colossal Granular Lithium Deposits Enabled by the Grain‐Coarsening Effect for High‐Efficiency Lithium Metal Full Batteries
journal, May 2020


"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes
journal, June 2020


Structural and Functional Analysis of Surface Film on Li Anode in Vinylene Carbonate-Containing Electrolyte
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Otake, Yumiko
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1798411

Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
journal, February 2017


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth
journal, September 2017


Li3N: A promising Li ionic conductor
journal, September 1979


DFT+U Study of Polaronic Conduction in Li 2 O 2 and Li 2 CO 3 : Implications for Li–Air Batteries
journal, March 2013

  • Garcia-Lastra, J. M.; Myrdal, J. S. G.; Christensen, R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 11
  • DOI: 10.1021/jp3107809

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Electrolytic Characteristics of Fluoroethylene Carbonate for Electric Double-Layer Capacitors at High Concentrations of Electrolyte
journal, January 2013


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes
journal, May 2018

  • Shi, Qiuwei; Zhong, Yiren; Wu, Min
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 22
  • DOI: 10.1073/pnas.1803634115

Elektrolytadditive für Lithiummetallanoden und wiederaufladbare Lithiummetallbatterien: Fortschritte und Perspektiven
journal, October 2018

  • Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier
  • Angewandte Chemie, Vol. 130, Issue 46
  • DOI: 10.1002/ange.201712702

Rechargeable lithiated silicon–sulfur (SLS) battery prototypes
journal, January 2012


Quantifying inactive lithium in lithium metal batteries
journal, August 2019


Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes
journal, March 2018

  • Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing
  • Angewandte Chemie, Vol. 130, Issue 19
  • DOI: 10.1002/ange.201801513

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
journal, November 2015


Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
journal, March 2018


Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries
journal, April 2019


The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength?
journal, March 2020


Countersolvent Electrolytes for Lithium‐Metal Batteries
journal, March 2020


Wettable carbon felt framework for high loading Li-metal composite anode
journal, June 2019


Enabling High‐Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte
journal, January 2020

  • Jie, Yulin; Liu, Xiaojing; Lei, Zhanwu
  • Angewandte Chemie International Edition, Vol. 59, Issue 9
  • DOI: 10.1002/anie.201914250

Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries
journal, September 2018

  • Yan, Chong; Yao, Yu-Xing; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 57, Issue 43
  • DOI: 10.1002/anie.201807034

Investigation of Fluoroethylene Carbonate Effects on Tin-based Lithium-Ion Battery Electrodes
journal, March 2015

  • Yang, Zhenzhen; Gewirth, Andrew A.; Trahey, Lynn
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 12
  • DOI: 10.1021/am508593s

Defect Thermodynamics and Diffusion Mechanisms in Li 2 CO 3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries
journal, March 2013

  • Shi, Siqi; Qi, Yue; Li, Hong
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp310591u

A new direction for the performance improvement of rechargeable lithium/sulfur batteries
journal, February 2012


Synergistic Dual‐Additive Electrolyte Enables Practical Lithium‐Metal Batteries
journal, June 2020


All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents
journal, October 2019


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Functional Electrolyte of Fluorinated Ether and Ester for Stabilizing Both 4.5 V LiCoO 2 Cathode and Lithium Metal Anode
journal, January 2020

  • Lin, Shuangshuang; Zhao, Jinbao
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 7
  • DOI: 10.1021/acsami.9b21679

Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
journal, October 2017

  • Adams, Brian D.; Zheng, Jianming; Ren, Xiaodi
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702097

Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
journal, September 2018


Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries
journal, January 2016

  • Jozwiuk, Anna; Berkes, Balázs B.; Weiß, Thomas
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE00789A

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF 6 and Cyclic Carbonate Additives
journal, November 2017


Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution
journal, May 2017


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


Enabling High‐Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte
journal, January 2020


Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes
journal, June 2018


Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries
journal, September 2018


Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
journal, August 2017

  • Zhao, Jie; Liao, Lei; Shi, Feifei
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b05251

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Electrolyte design for Li metal-free Li batteries
journal, April 2020


Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery
journal, January 2018

  • Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming
  • Nanoscale, Vol. 10, Issue 13
  • DOI: 10.1039/C7NR09058G

Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O 2 battery capacity
journal, July 2015

  • Burke, Colin M.; Pande, Vikram; Khetan, Abhishek
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 30
  • DOI: 10.1073/pnas.1505728112

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362