DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase‐Dependent Band Gap Engineering in Alloys of Metal‐Semiconductor Transition Metal Dichalcogenides

Abstract

Abstract Bandgap engineering plays a critical role in optimizing the electrical, optical and (photo)‐electrochemical applications of semiconductors. Alloying has been a historically successful way of tuning bandgaps by making solid solutions of two isovalent semiconductors. In this work, a novel form of bandgap engineering involving alloying non‐isovalent cations in a 2D transition metal dichalcogenide (TMDC) is presented. By alloying semiconducting MoSe 2 with metallic NbSe 2 , two structural phases of Mo 0.5 Nb 0.5 Se 2 , the 1T and 2H phases, are produced each with emergent electronic structure. At room temperature, it is observed that the 1T and 2H phases are semiconducting and metallic, respectively. For the 1T structure, scanning tunneling microscopy/spectroscopy (STM/STS) is used to measure band gaps in the range of 0.42–0.58 at 77 K. Electron diffraction patterns of the 1T structure obtained at room temperature show the presence of a nearly commensurate charge density wave (NCCDW) phase with periodic lattice distortions that result in an uncommon 4 × 4 supercell, rotated approximately 4° from the lattice. Density‐functional‐theory calculations confirm that local distortions, such as those in a NCCDW, can open up a band gap in 1T ‐Mo 0.5 Nb 0.5 Se 2 , but not inmore » the 2H phase. This work expands the boundaries of alloy‐based bandgap engineering by introducing a novel technique that facilitates CDW phases through alloying.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [1];  [3];  [3];  [1];  [4];  [5];  [1];  [1];  [6];  [3]
  1. Department of Physics University of Illinois at Chicago Chicago IL 60607 USA
  2. Department of Physics Washington University in St. Louis St. Louis MO 63130 USA
  3. Department of Mechanical and Industrial Engineering University of Illinois at Chicago Chicago IL 60607 USA
  4. Department of Chemistry University of Illinois at Chicago Chicago IL 60607 USA
  5. Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA
  6. Department of Mechanical Engineering and Material Science Washington University in St. Louis St. Louis MO 63130 USA, Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1785851
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials Journal Volume: 30 Journal Issue: 51; Journal ID: ISSN 1616-301X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Wang, Shuxi, Cavin, John, Hemmat, Zahra, Kumar, Khagesh, Ruckel, Alexander, Majidi, Leily, Gholivand, Hamed, Dawood, Radwa, Cabana, Jordi, Guisinger, Nathan, Klie, Robert F., Khalili‐Araghi, Fatemeh, Mishra, Rohan, and Salehi‐Khojin, Amin. Phase‐Dependent Band Gap Engineering in Alloys of Metal‐Semiconductor Transition Metal Dichalcogenides. Germany: N. p., 2020. Web. doi:10.1002/adfm.202004912.
Wang, Shuxi, Cavin, John, Hemmat, Zahra, Kumar, Khagesh, Ruckel, Alexander, Majidi, Leily, Gholivand, Hamed, Dawood, Radwa, Cabana, Jordi, Guisinger, Nathan, Klie, Robert F., Khalili‐Araghi, Fatemeh, Mishra, Rohan, & Salehi‐Khojin, Amin. Phase‐Dependent Band Gap Engineering in Alloys of Metal‐Semiconductor Transition Metal Dichalcogenides. Germany. https://doi.org/10.1002/adfm.202004912
Wang, Shuxi, Cavin, John, Hemmat, Zahra, Kumar, Khagesh, Ruckel, Alexander, Majidi, Leily, Gholivand, Hamed, Dawood, Radwa, Cabana, Jordi, Guisinger, Nathan, Klie, Robert F., Khalili‐Araghi, Fatemeh, Mishra, Rohan, and Salehi‐Khojin, Amin. Tue . "Phase‐Dependent Band Gap Engineering in Alloys of Metal‐Semiconductor Transition Metal Dichalcogenides". Germany. https://doi.org/10.1002/adfm.202004912.
@article{osti_1785851,
title = {Phase‐Dependent Band Gap Engineering in Alloys of Metal‐Semiconductor Transition Metal Dichalcogenides},
author = {Wang, Shuxi and Cavin, John and Hemmat, Zahra and Kumar, Khagesh and Ruckel, Alexander and Majidi, Leily and Gholivand, Hamed and Dawood, Radwa and Cabana, Jordi and Guisinger, Nathan and Klie, Robert F. and Khalili‐Araghi, Fatemeh and Mishra, Rohan and Salehi‐Khojin, Amin},
abstractNote = {Abstract Bandgap engineering plays a critical role in optimizing the electrical, optical and (photo)‐electrochemical applications of semiconductors. Alloying has been a historically successful way of tuning bandgaps by making solid solutions of two isovalent semiconductors. In this work, a novel form of bandgap engineering involving alloying non‐isovalent cations in a 2D transition metal dichalcogenide (TMDC) is presented. By alloying semiconducting MoSe 2 with metallic NbSe 2 , two structural phases of Mo 0.5 Nb 0.5 Se 2 , the 1T and 2H phases, are produced each with emergent electronic structure. At room temperature, it is observed that the 1T and 2H phases are semiconducting and metallic, respectively. For the 1T structure, scanning tunneling microscopy/spectroscopy (STM/STS) is used to measure band gaps in the range of 0.42–0.58 at 77 K. Electron diffraction patterns of the 1T structure obtained at room temperature show the presence of a nearly commensurate charge density wave (NCCDW) phase with periodic lattice distortions that result in an uncommon 4 × 4 supercell, rotated approximately 4° from the lattice. Density‐functional‐theory calculations confirm that local distortions, such as those in a NCCDW, can open up a band gap in 1T ‐Mo 0.5 Nb 0.5 Se 2 , but not in the 2H phase. This work expands the boundaries of alloy‐based bandgap engineering by introducing a novel technique that facilitates CDW phases through alloying.},
doi = {10.1002/adfm.202004912},
journal = {Advanced Functional Materials},
number = 51,
volume = 30,
place = {Germany},
year = {Tue Sep 22 00:00:00 EDT 2020},
month = {Tue Sep 22 00:00:00 EDT 2020}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying
journal, January 2014

  • Kutana, Alex; Penev, Evgeni S.; Yakobson, Boris I.
  • Nanoscale, Vol. 6, Issue 11
  • DOI: 10.1039/C4NR00177J

Strongly enhanced charge-density-wave order in monolayer NbSe2
journal, July 2015

  • Xi, Xiaoxiang; Zhao, Liang; Wang, Zefang
  • Nature Nanotechnology, Vol. 10, Issue 9, p. 765-769
  • DOI: 10.1038/nnano.2015.143

A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Bandgap opening in few-layered monoclinic MoTe2
journal, May 2015

  • Keum, Dong Hoon; Cho, Suyeon; Kim, Jung Ho
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3314

"Special points for Brillouin-zone integrations"—a reply
journal, August 1977


Power Dissipation of WSe 2 Field-Effect Transistors Probed by Low-Frequency Raman Thermometry
journal, June 2018

  • Behranginia, Amirhossein; Hemmat, Zahra; Majee, Arnab K.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 29
  • DOI: 10.1021/acsami.8b04724

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Charge density wave quantum critical point with strong enhancement of superconductivity
journal, July 2017

  • Gruner, Thomas; Jang, Dongjin; Huesges, Zita
  • Nature Physics, Vol. 13, Issue 10
  • DOI: 10.1038/nphys4191

Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2
journal, April 2014

  • Wang, Xingli; Gong, Yongji; Shi, Gang
  • ACS Nano, Vol. 8, Issue 5, p. 5125-5131
  • DOI: 10.1021/nn501175k

Mobility engineering and a metal–insulator transition in monolayer MoS2
journal, June 2013

  • Radisavljevic, Branimir; Kis, Andras
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3687

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap
journal, July 2017

  • Susarla, Sandhya; Kutana, Alex; Hachtel, Jordan A.
  • Advanced Materials, Vol. 29, Issue 35
  • DOI: 10.1002/adma.201702457

Gabedit-A graphical user interface for computational chemistry softwares
journal, November 2010

  • Allouche, Abdul-Rahman
  • Journal of Computational Chemistry, Vol. 32, Issue 1
  • DOI: 10.1002/jcc.21600

Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
journal, July 2015

  • Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8749

Two-Dimensional Molybdenum Tungsten Diselenide Alloys: Photoluminescence, Raman Scattering, and Electrical Transport
journal, June 2014

  • Zhang, Mei; Wu, Juanxia; Zhu, Yiming
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn5020566

Multimodal Acquisition of Properties and Structure with Transmission Electron Reciprocal-space (MAPSTER) Microscopy
journal, July 2016


Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys
journal, April 2013

  • Chen, Yanfeng; Xi, Jinyang; Dumcenco, Dumitru O.
  • ACS Nano, Vol. 7, Issue 5, p. 4610-4616
  • DOI: 10.1021/nn401420h

Raman studies of the normal phase of 2H-NbSe 2
journal, September 1982


Current Rerouting Improves Heat Removal in Few-Layer WSe 2 Devices
journal, March 2020

  • Majee, Arnab K.; Hemmat, Zahra; Foss, Cameron J.
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 12
  • DOI: 10.1021/acsami.9b22039

Differences in Chemical Doping Matter: Superconductivity in Ti 1– x Ta x Se 2 but Not in Ti 1– x Nb x Se 2
journal, February 2016


Atomic-resolution defect contrast in low angle annular dark-field STEM
journal, May 2012


Tuning Thermal Transport Through Atomically Thin Ti 3 C 2 T z MXene by Current Annealing in Vacuum
journal, March 2019

  • Hemmat, Zahra; Yasaei, Poya; Schultz, Jeremy F.
  • Advanced Functional Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adfm.201805693

High-resolution Z-contrast imaging of crystals
journal, August 1991


Review on the Raman spectroscopy of different types of layered materials
journal, January 2016

  • Zhang, Xin; Tan, Qing-Hai; Wu, Jiang-Bin
  • Nanoscale, Vol. 8, Issue 12
  • DOI: 10.1039/C5NR07205K

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Atoms in molecules
journal, January 1985


Excitation energy dependent Raman spectrum of MoSe2
journal, November 2015

  • Nam, Dahyun; Lee, Jae-Ung; Cheong, Hyeonsik
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17113

Photoluminescence emission and Raman response of monolayer MoS_2, MoSe_2, and WSe_2
journal, January 2013

  • Tonndorf, Philipp; Schmidt, Robert; Böttger, Philipp
  • Optics Express, Vol. 21, Issue 4
  • DOI: 10.1364/OE.21.004908

Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
journal, September 2017


Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Raman study and lattice dynamics of single molecular layers of MoS 2
journal, August 1991


Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2
journal, August 2017


Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe 2− x Te x
journal, July 2017


The alloy theoretic automated toolkit: A user guide
journal, December 2002


Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
journal, October 2017


Gate-tunable phase transitions in thin flakes of 1T-TaS2
journal, January 2015


Characterization of few-layer 1T-MoSe 2 and its superior performance in the visible-light induced hydrogen evolution reaction
journal, September 2014

  • Gupta, Uttam; Naidu, B. S.; Maitra, Urmimala
  • APL Materials, Vol. 2, Issue 9
  • DOI: 10.1063/1.4892976

High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition
journal, August 2017


Special quasirandom structures
journal, July 1990


1T-Phase Transition Metal Dichalcogenides (MoS 2 , MoSe 2 , WS 2 , and WSe 2 ) with Fast Heterogeneous Electron Transfer: Application on Second-Generation Enzyme-Based Biosensor
journal, November 2017

  • Rohaizad, Nasuha; Mayorga-Martinez, Carmen C.; Sofer, Zdeněk
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 46
  • DOI: 10.1021/acsami.7b13090

A library of atomically thin metal chalcogenides
journal, April 2018


Electronic structure of single layer 1T-NbSe 2 : interplay of lattice distortions, non-local exchange, and Mott–Hubbard correlations
journal, July 2018

  • Kamil, E.; Berges, J.; Schönhoff, G.
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 32
  • DOI: 10.1088/1361-648X/aad215

Monolayer 1T-NbSe2 as a Mott insulator
journal, November 2016

  • Nakata, Yuki; Sugawara, Katsuaki; Shimizu, Ryota
  • NPG Asia Materials, Vol. 8, Issue 11
  • DOI: 10.1038/am.2016.157

Selective Fabrication of Mott-Insulating and Metallic Monolayer TaSe 2
journal, March 2018

  • Nakata, Yuki; Yoshizawa, Takuya; Sugawara, Katsuaki
  • ACS Applied Nano Materials, Vol. 1, Issue 4
  • DOI: 10.1021/acsanm.8b00184

Composition-Tunable Synthesis of Large-Scale Mo 1– x W x S 2 Alloys with Enhanced Photoluminescence
journal, May 2018


The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

Quasi‐Binary Transition Metal Dichalcogenide Alloys: Thermodynamic Stability Prediction, Scalable Synthesis, and Application
journal, May 2020

  • Hemmat, Zahra; Cavin, John; Ahmadiparidari, Alireza
  • Advanced Materials, Vol. 32, Issue 26
  • DOI: 10.1002/adma.201907041