DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 β-lactamase

Abstract

The Klebsiella pneumoniae carbapenemase-2 (KPC-2) is a common source of antibiotic resistance in Gram-negative bacterial infections. KPC-2 is a class A β-lactamase that exhibits a broad substrate profile and hydrolyzes most β-lactam antibiotics including carbapenems owing to rapid deacylation of the covalent acyl-enzyme intermediate. However, the features that allow KPC-2 to deacylate substrates more rapidly than non-carbapenemase enzymes are not clear. The active-site residues in KPC-2 are largely conserved in sequence and structure compared with non-carbapenemases, suggesting that subtle alterations may collectively facilitate hydrolysis of carbapenems. We utilized a nonbiased genetic approach to identify mutants deficient in carbapenem hydrolysis but competent for ampicillin hydrolysis. Subsequent pre–steady-state enzyme kinetics analyses showed that the substitutions slow the rate of deacylation of carbapenems. Structure determination via X-ray diffraction indicated that a F72Y mutant forms a hydrogen bond between the tyrosine hydroxyl group and Glu166, which may lower basicity and impair the activation of the catalytic water for deacylation, whereas several mutants impact the structure of the Q214-R220 active site loop. A T215P substitution lowers the deacylation rate and drastically alters the conformation of the loop, thereby disrupting interactions between the enzyme and the carbapenem acyl-enzyme intermediate. Thus, the environment of the Glu166 generalmore » base and the precise placement and conformational stability of the Q214-R220 loop are critical for efficient deacylation of carbapenems by the KPC-2 enzyme. Therefore, the design of carbapenem antibiotics that interact with Glu166 or alter the Q214-R220 loop conformation may disrupt enzyme function and overcome resistance.« less

Authors:
; ORCiD logo; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1785783
Alternate Identifier(s):
OSTI ID: 1815744
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Name: Journal of Biological Chemistry Journal Volume: 296 Journal Issue: C; Journal ID: ISSN 0021-9258
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; beta-lactamase; carbapenemase; antibiotics; antibiotic resistance; carbapenems; enzyme; enzyme structure; enzyme kinetics; CRE; carbapenem-resistant Enterobacteriaceae; KPC-2; Klebsiella pneumoniae carbapenemase-2; MIC; minimum inhibitory concentration

Citation Formats

Furey, Ian M., Mehta, Shrenik C., Sankaran, Banumathi, Hu, Liya, Prasad, B. V. Venkataram, and Palzkill, Timothy. Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 β-lactamase. United States: N. p., 2021. Web. doi:10.1016/j.jbc.2021.100799.
Furey, Ian M., Mehta, Shrenik C., Sankaran, Banumathi, Hu, Liya, Prasad, B. V. Venkataram, & Palzkill, Timothy. Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 β-lactamase. United States. https://doi.org/10.1016/j.jbc.2021.100799
Furey, Ian M., Mehta, Shrenik C., Sankaran, Banumathi, Hu, Liya, Prasad, B. V. Venkataram, and Palzkill, Timothy. Fri . "Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 β-lactamase". United States. https://doi.org/10.1016/j.jbc.2021.100799.
@article{osti_1785783,
title = {Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 β-lactamase},
author = {Furey, Ian M. and Mehta, Shrenik C. and Sankaran, Banumathi and Hu, Liya and Prasad, B. V. Venkataram and Palzkill, Timothy},
abstractNote = {The Klebsiella pneumoniae carbapenemase-2 (KPC-2) is a common source of antibiotic resistance in Gram-negative bacterial infections. KPC-2 is a class A β-lactamase that exhibits a broad substrate profile and hydrolyzes most β-lactam antibiotics including carbapenems owing to rapid deacylation of the covalent acyl-enzyme intermediate. However, the features that allow KPC-2 to deacylate substrates more rapidly than non-carbapenemase enzymes are not clear. The active-site residues in KPC-2 are largely conserved in sequence and structure compared with non-carbapenemases, suggesting that subtle alterations may collectively facilitate hydrolysis of carbapenems. We utilized a nonbiased genetic approach to identify mutants deficient in carbapenem hydrolysis but competent for ampicillin hydrolysis. Subsequent pre–steady-state enzyme kinetics analyses showed that the substitutions slow the rate of deacylation of carbapenems. Structure determination via X-ray diffraction indicated that a F72Y mutant forms a hydrogen bond between the tyrosine hydroxyl group and Glu166, which may lower basicity and impair the activation of the catalytic water for deacylation, whereas several mutants impact the structure of the Q214-R220 active site loop. A T215P substitution lowers the deacylation rate and drastically alters the conformation of the loop, thereby disrupting interactions between the enzyme and the carbapenem acyl-enzyme intermediate. Thus, the environment of the Glu166 general base and the precise placement and conformational stability of the Q214-R220 loop are critical for efficient deacylation of carbapenems by the KPC-2 enzyme. Therefore, the design of carbapenem antibiotics that interact with Glu166 or alter the Q214-R220 loop conformation may disrupt enzyme function and overcome resistance.},
doi = {10.1016/j.jbc.2021.100799},
journal = {Journal of Biological Chemistry},
number = C,
volume = 296,
place = {United States},
year = {Fri Jan 01 00:00:00 EST 2021},
month = {Fri Jan 01 00:00:00 EST 2021}
}

Works referenced in this record:

The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter
journal, September 2006


Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group
journal, July 1973

  • Burgi, H. B.; Dunitz, J. D.; Shefter, Eli.
  • Journal of the American Chemical Society, Vol. 95, Issue 15
  • DOI: 10.1021/ja00796a058

Crystal Structures of KPC-2 β-Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226
journal, February 2012

  • Ke, Wei; Bethel, Christopher R.; Papp-Wallace, Krisztina M.
  • Antimicrobial Agents and Chemotherapy, Vol. 56, Issue 5
  • DOI: 10.1128/AAC.06099-11

Carbapenemases: the Versatile  -Lactamases
journal, July 2007

  • Queenan, A. M.; Bush, K.
  • Clinical Microbiology Reviews, Vol. 20, Issue 3
  • DOI: 10.1128/CMR.00001-07

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

β-Lactamases: A Focus on Current Challenges
journal, October 2016


Enzyme Architecture: Amino Acid Side-Chains That Function To Optimize the Basicity of the Active Site Glutamate of Triosephosphate Isomerase
journal, June 2018

  • Zhai, Xiang; Reinhardt, Christopher J.; Malabanan, M. Merced
  • Journal of the American Chemical Society, Vol. 140, Issue 26
  • DOI: 10.1021/jacs.8b04367

Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme Populations in Crystals and Solution
journal, November 2008

  • Kalp, Matthew; Carey, Paul R.
  • Biochemistry, Vol. 47, Issue 45
  • DOI: 10.1021/bi800833u

Single-turnover and steady-state kinetics of hydrolysis of cephalosporins by β-lactamase I from Bacillus cereus
journal, October 1985

  • Bicknell, R.; Waley, S. G.
  • Biochemical Journal, Vol. 231, Issue 1
  • DOI: 10.1042/bj2310083

Negative Epistasis and Evolvability in TEM-1 β-Lactamase—The Thin Line between an Enzyme's Conformational Freedom and Disorder
journal, July 2015

  • Dellus-Gur, Eynat; Elias, Mikael; Caselli, Emilia
  • Journal of Molecular Biology, Vol. 427, Issue 14
  • DOI: 10.1016/j.jmb.2015.05.011

β-Lactams and β-Lactamase Inhibitors: An Overview
journal, June 2016


Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli
journal, September 1988


Three Decades of the Class A β-Lactamase Acyl-Enzyme
journal, October 2009


Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae
journal, October 2010


Substrate Selectivity and a Novel Role in Inhibitor Discrimination by Residue 237 in the KPC-2 β-Lactamase
journal, July 2010

  • Papp-Wallace, Krisztina M.; Taracila, Magdalena; Hornick, John M.
  • Antimicrobial Agents and Chemotherapy, Vol. 54, Issue 7
  • DOI: 10.1128/AAC.00197-10

Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates
journal, April 2006

  • Radisky, E. S.; Lee, J. M.; Lu, C. -J. K.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 18
  • DOI: 10.1073/pnas.0601910103

Effects on Substrate Profile by Mutational Substitutions at Positions 164 and 179 of the Class A TEMpUC19 β-Lactamase from Escherichia coli
journal, August 1999

  • Vakulenko, Sergei B.; Taibi-Tronche, Pascale; Tóth, Márta
  • Journal of Biological Chemistry, Vol. 274, Issue 33
  • DOI: 10.1074/jbc.274.33.23052

Mechanistic Insights into β-Lactamase-Catalysed Carbapenem Degradation Through Product Characterisation
journal, September 2019

  • Lohans, Christopher T.; Freeman, Emily I.; Groesen, Emma van
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-019-49264-0

Inhibition of Klebsiella β-Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study
journal, September 2015


Role of the Hydrophobic Bridge in the Carbapenemase Activity of Class D β-Lactamases
journal, December 2018

  • Stewart, Nichole K.; Smith, Clyde A.; Antunes, Nuno T.
  • Antimicrobial Agents and Chemotherapy, Vol. 63, Issue 2
  • DOI: 10.1128/AAC.02191-18

Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae
journal, April 2001


UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

The Structure of <latex>$\beta$</latex>-Lactamases
journal, May 1980

  • Ambler, R. P.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 289, Issue 1036
  • DOI: 10.1098/rstb.1980.0049

Synergistic effects of functionally distinct substitutions in β-lactamase variants shed light on the evolution of bacterial drug resistance
journal, October 2018

  • Patel, Meha P.; Hu, Liya; Brown, Cameron A.
  • Journal of Biological Chemistry, Vol. 293, Issue 46
  • DOI: 10.1074/jbc.RA118.003792

Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of ?-lactamase
journal, April 1994


Amino Acid Residues That Contribute to Substrate Specificity of Class A β-Lactamase SME-1
journal, August 2005


A clogged gutter mechanism for protease inhibitors
journal, July 2002

  • Radisky, E. S.; Koshland, D. E.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 16
  • DOI: 10.1073/pnas.112332899

iMOSFLM : a new graphical interface for diffraction-image processing with MOSFLM
journal, March 2011

  • Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910048675

A drug-resistant β-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency
journal, December 2020

  • Soeung, Victoria; Lu, Shuo; Hu, Liya
  • Journal of Biological Chemistry, Vol. 295, Issue 52
  • DOI: 10.1074/jbc.RA120.016103

Crystal Structure of KPC-2:  Insights into Carbapenemase Activity in Class A β-Lactamases ,
journal, May 2007

  • Ke, Wei; Bethel, Christopher R.; Thomson, Jodi M.
  • Biochemistry, Vol. 46, Issue 19
  • DOI: 10.1021/bi700300u

The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace
journal, February 2017

  • Logan, Latania K.; Weinstein, Robert A.
  • The Journal of Infectious Diseases, Vol. 215, Issue suppl_1
  • DOI: 10.1093/infdis/jiw282

Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge by the Common Class A β-Lactamases from the Antibiotic-Resistant Bacteria
journal, September 1998

  • Maveyraud, Laurent; Mourey, Lionel; Kotra, Lakshmi P.
  • Journal of the American Chemical Society, Vol. 120, Issue 38
  • DOI: 10.1021/ja9818001

Magnitude and Origin of the Enhanced Basicity of the Catalytic Glutamate of Triosephosphate Isomerase
journal, April 2013

  • Malabanan, M. Merced; Nitsch-Velasquez, Lucia; Amyes, Tina L.
  • Journal of the American Chemical Society, Vol. 135, Issue 16
  • DOI: 10.1021/ja401504w

The 1.4 Å Crystal Structure of the Class D β-Lactamase OXA-1 Complexed with Doripenem
journal, December 2009

  • Schneider, Kyle D.; Karpen, Mary E.; Bonomo, Robert A.
  • Biochemistry, Vol. 48, Issue 50
  • DOI: 10.1021/bi901690r

Metallo-β-lactamase structure and function: Metallo-β-lactamase structure and function
journal, November 2012


Antagonism between substitutions in β-lactamase explains a path not taken in the evolution of bacterial drug resistance
journal, May 2020

  • Brown, Cameron A.; Hu, Liya; Sun, Zhizeng
  • Journal of Biological Chemistry, Vol. 295, Issue 21
  • DOI: 10.1074/jbc.RA119.012489

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Molecular Basis of Substrate Recognition and Product Release by the Klebsiella pneumoniae Carbapenemase (KPC-2)
journal, April 2017


Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Inhibition of Class A β-Lactamases by Carbapenems: Crystallographic Observation of Two Conformations of Meropenem in SHV-1
journal, September 2008

  • Nukaga, Michiyosi; Bethel, Christopher R.; Thomson, Jodi M.
  • Journal of the American Chemical Society, Vol. 130, Issue 38
  • DOI: 10.1021/ja7111146

Inhibition of the RTEM .beta.-lactamase from Escherichia coli. Interaction of the enzyme with derivatives of olivanic acid
journal, May 1981

  • Charnas, Robert L.; Knowles, Jeremy R.
  • Biochemistry, Vol. 20, Issue 10
  • DOI: 10.1021/bi00513a005

Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution
journal, October 1992

  • Strynadka, Natalie C. J.; Adachi, Hiroyuki; Jensen, Susan E.
  • Nature, Vol. 359, Issue 6397
  • DOI: 10.1038/359700a0

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

A standard numbering scheme for the class A β-lactamases
journal, May 1991

  • Ambler, R. P.; Coulson, A. F. W.; Frère, J. M.
  • Biochemical Journal, Vol. 276, Issue 1
  • DOI: 10.1042/bj2760269

The Basis for Carbapenem Hydrolysis by Class A β-Lactamases: A Combined Investigation using Crystallography and Simulations
journal, October 2012

  • Fonseca, Fátima; Chudyk, Ewa I.; van der Kamp, Marc W.
  • Journal of the American Chemical Society, Vol. 134, Issue 44
  • DOI: 10.1021/ja304460j

Molecular replacement with MOLREP
journal, December 2009

  • Vagin, Alexei; Teplyakov, Alexei
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042589

KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate
journal, January 2021

  • Mehta, Shrenik C.; Furey, Ian M.; Pemberton, Orville A.
  • Journal of Biological Chemistry, Vol. 296
  • DOI: 10.1074/jbc.RA120.015050

What Makes a Protein Fold Amenable to Functional Innovation? Fold Polarity and Stability Trade-offs
journal, July 2013

  • Dellus-Gur, Eynat; Toth-Petroczy, Agnes; Elias, Mikael
  • Journal of Molecular Biology, Vol. 425, Issue 14
  • DOI: 10.1016/j.jmb.2013.03.033

Modelling proteins’ hidden conformations to predict antibiotic resistance
journal, October 2016

  • Hart, Kathryn M.; Ho, Chris M. W.; Dutta, Supratik
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12965

Crystal Structure of the Pseudomonas aeruginosa BEL-1 Extended-Spectrum β-Lactamase and its Complex with Moxalactam and Imipenem
journal, September 2016

  • Pozzi, Cecilia; De Luca, Filomena; Benvenuti, Manuela
  • Antimicrobial Agents and Chemotherapy
  • DOI: 10.1128/AAC.00936-16

Inhibition of the RTEM .beta.-lactamase from Escherichia coli. Interaction of the enzyme with derivatives of olivanic acid
journal, June 1982

  • Easton, Christopher J.; Knowles, Jeremy R.
  • Biochemistry, Vol. 21, Issue 12
  • DOI: 10.1021/bi00541a008

Biochemical and Structural Characterization of Mycobacterium tuberculosis β-Lactamase with the Carbapenems Ertapenem and Doripenem
journal, May 2010

  • Tremblay, Lee W.; Fan, Fan; Blanchard, John S.
  • Biochemistry, Vol. 49, Issue 17
  • DOI: 10.1021/bi100232q

Structure–Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase
journal, May 2016