DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Real-space formulation of the stress tensor for O(N) density functional theory: Application to high temperature calculations

Abstract

We present an accurate and efficient real-space formulation of the Hellmann–Feynman stress tensor for O(N) Kohn–Sham density functional theory (DFT). While applicable at any temperature, the formulation is most efficient at high temperature where the Fermi–Dirac distribution becomes smoother and the density matrix becomes correspondingly more localized. We first rewrite the orbital-dependent stress tensor for real-space DFT in terms of the density matrix, thereby making it amenable to O(N) methods. We then describe its evaluation within the O(N) infinite-cell Clenshaw–Curtis Spectral Quadrature (SQ) method, a technique that is applicable to metallic and insulating systems, is highly parallelizable, becomes increasingly efficient with increasing temperature, and provides results corresponding to the infinite crystal without the need of Brillouin zone integration. We demonstrate systematic convergence of the resulting formulation with respect to SQ parameters to exact diagonalization results and show convergence with respect to mesh size to the established plane wave results. Here, we employ the new formulation to compute the viscosity of hydrogen at 106 K from Kohn–Sham quantum molecular dynamics, where we find agreement with previous more approximate orbital-free density functional methods.

Authors:
 [1]; ORCiD logo [2];  [3];  [2]; ORCiD logo [1]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); École Normale Supérieure de Lyon (France)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); U.S. National Science Foundation (NSF)
OSTI Identifier:
1784614
Alternate Identifier(s):
OSTI ID: 1639126
Report Number(s):
LLNL-JRNL-813246
Journal ID: ISSN 0021-9606; 1020601; TRN: US2210342
Grant/Contract Number:  
AC52-07NA27344; 1663244
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 153; Journal Issue: 3; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Viscosity; Quantum chemical dynamics; Density functional theory; Density-matrix; High performance computing

Citation Formats

Sharma, Abhiraj, Hamel, Sebastien, Bethkenhagen, Mandy, Pask, John E., and Suryanarayana, Phanish. Real-space formulation of the stress tensor for O(N) density functional theory: Application to high temperature calculations. United States: N. p., 2020. Web. doi:10.1063/5.0016783.
Sharma, Abhiraj, Hamel, Sebastien, Bethkenhagen, Mandy, Pask, John E., & Suryanarayana, Phanish. Real-space formulation of the stress tensor for O(N) density functional theory: Application to high temperature calculations. United States. https://doi.org/10.1063/5.0016783
Sharma, Abhiraj, Hamel, Sebastien, Bethkenhagen, Mandy, Pask, John E., and Suryanarayana, Phanish. Mon . "Real-space formulation of the stress tensor for O(N) density functional theory: Application to high temperature calculations". United States. https://doi.org/10.1063/5.0016783. https://www.osti.gov/servlets/purl/1784614.
@article{osti_1784614,
title = {Real-space formulation of the stress tensor for O(N) density functional theory: Application to high temperature calculations},
author = {Sharma, Abhiraj and Hamel, Sebastien and Bethkenhagen, Mandy and Pask, John E. and Suryanarayana, Phanish},
abstractNote = {We present an accurate and efficient real-space formulation of the Hellmann–Feynman stress tensor for O(N) Kohn–Sham density functional theory (DFT). While applicable at any temperature, the formulation is most efficient at high temperature where the Fermi–Dirac distribution becomes smoother and the density matrix becomes correspondingly more localized. We first rewrite the orbital-dependent stress tensor for real-space DFT in terms of the density matrix, thereby making it amenable to O(N) methods. We then describe its evaluation within the O(N) infinite-cell Clenshaw–Curtis Spectral Quadrature (SQ) method, a technique that is applicable to metallic and insulating systems, is highly parallelizable, becomes increasingly efficient with increasing temperature, and provides results corresponding to the infinite crystal without the need of Brillouin zone integration. We demonstrate systematic convergence of the resulting formulation with respect to SQ parameters to exact diagonalization results and show convergence with respect to mesh size to the established plane wave results. Here, we employ the new formulation to compute the viscosity of hydrogen at 106 K from Kohn–Sham quantum molecular dynamics, where we find agreement with previous more approximate orbital-free density functional methods.},
doi = {10.1063/5.0016783},
journal = {Journal of Chemical Physics},
number = 3,
volume = 153,
place = {United States},
year = {Mon Jul 20 00:00:00 EDT 2020},
month = {Mon Jul 20 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Properties of the density matrix from realistic calculations
journal, May 2001


SQDFT: Spectral Quadrature method for large-scale parallel O ( N ) Kohn–Sham calculations at high temperature
journal, March 2018

  • Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj
  • Computer Physics Communications, Vol. 224
  • DOI: 10.1016/j.cpc.2017.12.003

Decay properties of the finite-temperature density matrix in metals
journal, August 1998


Spatial decay of the single-particle density matrix in tight-binding metals: Analytic results in two dimensions
journal, December 2002


Decay Properties of Spectral Projectors with Applications to Electronic Structure
journal, January 2013

  • Benzi, Michele; Boito, Paola; Razouk, Nader
  • SIAM Review, Vol. 55, Issue 1
  • DOI: 10.1137/100814019

Frontiers and Challenges in Warm Dense Matter
book, January 2014

  • Graziani, Frank; Desjarlais, Michael P.; Redmer, Ronald
  • Lecture Notes in Computational Science and Engineering, Vol. 96
  • DOI: 10.1007/978-3-319-04912-0

On preconditioning the self-consistent field iteration in real-space Density Functional Theory
journal, January 2020


SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Isolated clusters
journal, March 2017


The viscosity of liquid iron at the physical conditions of the Earth's core
journal, April 1998

  • de Wijs, Gilles A.; Kresse, Georg; Vočadlo, Lidunka
  • Nature, Vol. 392, Issue 6678
  • DOI: 10.1038/33905

Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
journal, November 2013

  • Jakse, Noel; Pasturel, Alain
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03135

A mesh-free convex approximation scheme for Kohn–Sham density functional theory
journal, June 2011

  • Suryanarayana, Phanish; Bhattacharya, Kaushik; Ortiz, Michael
  • Journal of Computational Physics, Vol. 230, Issue 13
  • DOI: 10.1016/j.jcp.2011.03.018

\mathcal{O}(N) methods in electronic structure calculations
journal, February 2012


The Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold
journal, February 2009


Accurate and Scalable O ( N ) Algorithm for First-Principles Molecular-Dynamics Computations on Large Parallel Computers
journal, January 2014


Nearsightedness of electronic matter
journal, August 2005

  • Prodan, E.; Kohn, W.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 33
  • DOI: 10.1073/pnas.0505436102

All-electron formalism for total energy strain derivatives and stress tensor components for numeric atom-centered orbitals
journal, May 2015


Electronic annealing Fermi operator expansion for DFT calculations on metallic systems
journal, February 2018

  • Aarons, Jolyon; Skylaris, Chris-Kriton
  • The Journal of Chemical Physics, Vol. 148, Issue 7
  • DOI: 10.1063/1.5001340

Alternating Anderson–Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems
journal, January 2019

  • Suryanarayana, Phanish; Pratapa, Phanisri P.; Pask, John E.
  • Computer Physics Communications, Vol. 234
  • DOI: 10.1016/j.cpc.2018.07.007

Electronic Structure
book, January 2004


Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems
journal, February 2016

  • Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.
  • Journal of Computational Physics, Vol. 306
  • DOI: 10.1016/j.jcp.2015.11.018

On spectral quadrature for linear-scaling Density Functional Theory
journal, October 2013


Introducing ONETEP : Linear-scaling density functional simulations on parallel computers
journal, February 2005

  • Skylaris, Chris-Kriton; Haynes, Peter D.; Mostofi, Arash A.
  • The Journal of Chemical Physics, Vol. 122, Issue 8
  • DOI: 10.1063/1.1839852

Equation of state of boron nitride combining computation, modeling, and experiment
journal, April 2019


Hellmann‐Feynman and Virial Theorems in the X α Method
journal, September 1972

  • Slater, John C.
  • The Journal of Chemical Physics, Vol. 57, Issue 6
  • DOI: 10.1063/1.1678599

Daubechies wavelets for linear scaling density functional theory
journal, May 2014

  • Mohr, Stephan; Ratcliff, Laura E.; Boulanger, Paul
  • The Journal of Chemical Physics, Vol. 140, Issue 20
  • DOI: 10.1063/1.4871876

Linear scaling DFT calculations for large tungsten systems using an optimized local basis
journal, May 2018


Augmented Lagrangian formulation of orbital-free density functional theory
journal, October 2014


SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems
journal, July 2017


Density-functional theory of macroscopic stress: Gradient-corrected calculations for crystalline Se
journal, August 1994


Non-periodic finite-element formulation of Kohn–Sham density functional theory
journal, February 2010

  • Suryanarayana, Phanish; Gavini, Vikram; Blesgen, Thomas
  • Journal of the Mechanics and Physics of Solids, Vol. 58, Issue 2
  • DOI: 10.1016/j.jmps.2009.10.002

Perspective: Methods for large-scale density functional calculations on metallic systems
journal, December 2016

  • Aarons, Jolyon; Sarwar, Misbah; Thompsett, David
  • The Journal of Chemical Physics, Vol. 145, Issue 22
  • DOI: 10.1063/1.4972007

Canonical density matrix perturbation theory
journal, December 2015

  • Niklasson, Anders M. N.; Cawkwell, M. J.; Rubensson, Emanuel H.
  • Physical Review E, Vol. 92, Issue 6
  • DOI: 10.1103/physreve.92.063301

The SIESTA method for ab initio order- N materials simulation
journal, March 2002

  • Soler, José M.; Artacho, Emilio; Gale, Julian D.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 11
  • DOI: 10.1088/0953-8984/14/11/302

Order-N first-principles calculations with the conquest code
journal, July 2007

  • Gillan, M. J.; Bowler, D. R.; Torralba, A. S.
  • Computer Physics Communications, Vol. 177, Issue 1-2
  • DOI: 10.1016/j.cpc.2007.02.075

On the calculation of the stress tensor in real-space Kohn-Sham density functional theory
journal, November 2018

  • Sharma, Abhiraj; Suryanarayana, Phanish
  • The Journal of Chemical Physics, Vol. 149, Issue 19
  • DOI: 10.1063/1.5057355

Pulay forces from localized orbitals optimized in situ using a psinc basis set
journal, June 2012

  • Ruiz-Serrano, Álvaro; Hine, Nicholas D. M.; Skylaris, Chris-Kriton
  • The Journal of Chemical Physics, Vol. 136, Issue 23
  • DOI: 10.1063/1.4728026

Coarse-graining Kohn–Sham Density Functional Theory
journal, January 2013

  • Suryanarayana, Phanish; Bhattacharya, Kaushik; Ortiz, Michael
  • Journal of the Mechanics and Physics of Solids, Vol. 61, Issue 1
  • DOI: 10.1016/j.jmps.2012.09.002

Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project
journal, March 2012

  • Graziani, Frank R.; Batista, Victor S.; Benedict, Lorin X.
  • High Energy Density Physics, Vol. 8, Issue 1
  • DOI: 10.1016/j.hedp.2011.06.010

Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations
journal, March 2016


Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure
journal, April 2008


Spectral Quadrature method for accurate O ( N ) electronic structure calculations of metals and insulators
journal, March 2016

  • Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.
  • Computer Physics Communications, Vol. 200
  • DOI: 10.1016/j.cpc.2015.11.005

Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics
journal, January 2003

  • Minary, Peter; Martyna, Glenn J.; Tuckerman, Mark E.
  • The Journal of Chemical Physics, Vol. 118, Issue 6
  • DOI: 10.1063/1.1534582

Locality of the Density Matrix in Metals, Semiconductors, and Insulators
journal, March 1999


Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory
journal, February 2016


Works referencing / citing this record: