DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supervised jet clustering with graph neural networks for Lorentz boosted bosons

Abstract

Jet clustering is traditionally an unsupervised learning task because there is no unique way to associate hadronic final states with the quark and gluon degrees of freedom that generated them. However, for uncolored particles like W , Z , and Higgs bosons, it is possible to approximately (though not exactly) associate final state hadrons to their ancestor. By labeling simulated final state hadrons as descending from an uncolored particle, it is possible to train a supervised learning method to create boson jets. Such a method would operate on individual particles and identify connections between particles originating from the same uncolored particle. Graph neural networks are well-suited for this purpose as they can act on unordered sets and naturally create strong connections between particles with the same label. These networks are used to train a supervised jet clustering algorithm. The kinematic properties of these graph jets better match the properties of simulated Lorentz-boosted W bosons. Furthermore, the graph jets contain more information for discriminating W jets from generic quark jets. This work marks the beginning of a new exploration in jet physics to use machine learning to optimize the construction of jets and not only the observables computed from jet constituents.

Authors:
ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1781715
Alternate Identifier(s):
OSTI ID: 1764524
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Physical Review D
Additional Journal Information:
Journal Name: Physical Review D Journal Volume: 102 Journal Issue: 7; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; quantum chromodynamics; quark & gluon jets; gauge bosons; hadrons; artificial neural networks; hadron colliders; machine learning

Citation Formats

Ju, Xiangyang, and Nachman, Benjamin. Supervised jet clustering with graph neural networks for Lorentz boosted bosons. United States: N. p., 2020. Web. doi:10.1103/PhysRevD.102.075014.
Ju, Xiangyang, & Nachman, Benjamin. Supervised jet clustering with graph neural networks for Lorentz boosted bosons. United States. https://doi.org/10.1103/PhysRevD.102.075014
Ju, Xiangyang, and Nachman, Benjamin. Tue . "Supervised jet clustering with graph neural networks for Lorentz boosted bosons". United States. https://doi.org/10.1103/PhysRevD.102.075014.
@article{osti_1781715,
title = {Supervised jet clustering with graph neural networks for Lorentz boosted bosons},
author = {Ju, Xiangyang and Nachman, Benjamin},
abstractNote = {Jet clustering is traditionally an unsupervised learning task because there is no unique way to associate hadronic final states with the quark and gluon degrees of freedom that generated them. However, for uncolored particles like W, Z, and Higgs bosons, it is possible to approximately (though not exactly) associate final state hadrons to their ancestor. By labeling simulated final state hadrons as descending from an uncolored particle, it is possible to train a supervised learning method to create boson jets. Such a method would operate on individual particles and identify connections between particles originating from the same uncolored particle. Graph neural networks are well-suited for this purpose as they can act on unordered sets and naturally create strong connections between particles with the same label. These networks are used to train a supervised jet clustering algorithm. The kinematic properties of these graph jets better match the properties of simulated Lorentz-boosted W bosons. Furthermore, the graph jets contain more information for discriminating W jets from generic quark jets. This work marks the beginning of a new exploration in jet physics to use machine learning to optimize the construction of jets and not only the observables computed from jet constituents.},
doi = {10.1103/PhysRevD.102.075014},
journal = {Physical Review D},
number = 7,
volume = 102,
place = {United States},
year = {Tue Oct 13 00:00:00 EDT 2020},
month = {Tue Oct 13 00:00:00 EDT 2020}
}

Works referenced in this record:

The anti- k t jet clustering algorithm
journal, April 2008


Pulling out all the tops with computer vision and deep learning
journal, October 2018

  • Macaluso, Sebastian; Shih, David
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/JHEP10(2018)121

Learning representations of irregular particle-detector geometry with distance-weighted graph networks
journal, July 2019


Deep-learned Top Tagging with a Lorentz Layer
journal, January 2018


Electromagnetic showers beyond shower shapes
journal, January 2020

  • de Oliveira, Luke; Nachman, Benjamin; Paganini, Michela
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 951
  • DOI: 10.1016/j.nima.2019.162879

Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons
journal, November 2019


How much information is in a jet?
journal, June 2017


End-to-end jet classification of quarks and gluons with the CMS Open Data
journal, October 2020

  • Andrews, M.; Alison, J.; An, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 977
  • DOI: 10.1016/j.nima.2020.164304

Power counting to better jet observables
journal, December 2014

  • Larkoski, Andrew J.; Moult, Ian; Neill, Duff
  • Journal of High Energy Physics, Vol. 2014, Issue 12
  • DOI: 10.1007/JHEP12(2014)009

JEDI-net: a jet identification algorithm based on interaction networks
journal, January 2020


PYTHIA 6.4 physics and manual
journal, May 2006


Boosted objects: a probe of beyond the standard model physics
journal, June 2011


Deep learning in color: towards automated quark/gluon jet discrimination
journal, January 2017

  • Komiske, Patrick T.; Metodiev, Eric M.; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2017, Issue 1
  • DOI: 10.1007/JHEP01(2017)110

Deep-learning top taggers or the end of QCD?
journal, May 2017

  • Kasieczka, Gregor; Plehn, Tilman; Russell, Michael
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)006

Boosted W and Z tagging with jet charge and deep learning
journal, March 2020


Jet charge and machine learning
journal, October 2018

  • Fraser, Katherine; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/JHEP10(2018)093

FastJet user manual: (for version 3.0.2)
journal, March 2012


Fuzzy jets
journal, June 2016

  • Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel
  • Journal of High Energy Physics, Vol. 2016, Issue 6
  • DOI: 10.1007/JHEP06(2016)010

Topology Classification with Deep Learning to Improve Real-Time Event Selection at the LHC
journal, August 2019

  • Nguyen, T. Q.; Weitekamp, D.; Anderson, D.
  • Computing and Software for Big Science, Vol. 3, Issue 1
  • DOI: 10.1007/s41781-019-0028-1

Energy flow polynomials: a complete linear basis for jet substructure
journal, April 2018

  • Komiske, Patrick T.; Metodiev, Eric M.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2018, Issue 4
  • DOI: 10.1007/JHEP04(2018)013

Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
journal, June 2020


Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair
journal, February 2018


Calorimetry with deep learning: particle simulation and reconstruction for collider physics
journal, July 2020


Jet substructure at the Large Hadron Collider
journal, December 2019


Systematics of quark/gluon tagging
journal, July 2017

  • Gras, Philippe; Höche, Stefan; Kar, Deepak
  • Journal of High Energy Physics, Vol. 2017, Issue 7
  • DOI: 10.1007/JHEP07(2017)091

Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012
journal, March 2014


Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches
journal, May 2010

  • Ellis, Stephen D.; Vermilion, Christopher K.; Walsh, Jonathan R.
  • Physical Review D, Vol. 81, Issue 9
  • DOI: 10.1103/PhysRevD.81.094023

Performance of top-quark and $$\varvec{W}$$ W -boson tagging with ATLAS in Run 2 of the LHC
journal, April 2019


Identifying boosted objects with N-subjettiness
journal, March 2011


Jet flavor classification in high-energy physics with deep neural networks
journal, December 2016


Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning
journal, November 2019


Recursive Neural Networks in Quark/Gluon Tagging
journal, June 2018


Automating the construction of jet observables with machine learning
journal, November 2019


Search for diboson resonances in hadronic final states in 139 fb−1 of pp collisions at s$$ \sqrt{s} $$ = 13 TeV with the ATLAS detector
journal, September 2019

  • Aad, G.; Abbott, B.; Abbott, D. C.
  • Journal of High Energy Physics, Vol. 2019, Issue 9
  • DOI: 10.1007/JHEP09(2019)091

Jet trimming
journal, February 2010

  • Krohn, David; Thaler, Jesse; Wang, Lian-Tao
  • Journal of High Energy Physics, Vol. 2010, Issue 2
  • DOI: 10.1007/JHEP02(2010)084

Dispelling the <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>N</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> myth for the <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi>k</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math> jet-finder
journal, September 2006


Deep Learning and Its Application to LHC Physics
journal, October 2018


Jet Substructure as a New Higgs-Search Channel at the Large Hadron Collider
journal, June 2008


Boosting H → b b ¯ $$ H\to b\overline{b} $$ with machine learning
journal, October 2018

  • Lin, Joshua; Freytsis, Marat; Moult, Ian
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/JHEP10(2018)101

Looking Inside Jets: An Introduction to Jet Substructure and Boosted-object Phenomenology
book, January 2019


Soft drop
journal, May 2014

  • Larkoski, Andrew J.; Marzani, Simone; Soyez, Gregory
  • Journal of High Energy Physics, Vol. 2014, Issue 5
  • DOI: 10.1007/JHEP05(2014)146

Maximizing boosted top identification by minimizing N-subjettiness
journal, February 2012


Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks
journal, May 2012


A brief introduction to PYTHIA 8.1
journal, June 2008

  • Sjöstrand, Torbjörn; Mrenna, Stephen; Skands, Peter
  • Computer Physics Communications, Vol. 178, Issue 11
  • DOI: 10.1016/j.cpc.2008.01.036

In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector
journal, February 2019


Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at s = 13 TeV
journal, September 2017


Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s = 13 TeV
journal, December 2019


Optimal Jet Finder
journal, September 2003


The Machine Learning landscape of top taggers
journal, January 2019


Pileup Mitigation with Machine Learning (PUMML)
journal, December 2017

  • Komiske, Patrick T.; Metodiev, Eric M.; Nachman, Benjamin
  • Journal of High Energy Physics, Vol. 2017, Issue 12
  • DOI: 10.1007/JHEP12(2017)051

Towards jetography
journal, May 2010


Jet-images — deep learning edition
journal, July 2016

  • de Oliveira, Luke; Kagan, Michael; Mackey, Lester
  • Journal of High Energy Physics, Vol. 2016, Issue 7
  • DOI: 10.1007/JHEP07(2016)069

Quark-gluon tagging: Machine learning vs detector
journal, January 2019


Jet-images: computer vision inspired techniques for jet tagging
journal, February 2015

  • Cogan, Josh; Kagan, Michael; Strauss, Emanuel
  • Journal of High Energy Physics, Vol. 2015, Issue 2
  • DOI: 10.1007/JHEP02(2015)118

Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV
journal, May 2018


Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLAS detector at 13 $$\text {TeV}$$TeV
journal, October 2019


Novel jet observables from machine learning
journal, March 2018

  • Datta, Kaustuv; Larkoski, Andrew J.
  • Journal of High Energy Physics, Vol. 2018, Issue 3
  • DOI: 10.1007/JHEP03(2018)086

Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC
journal, March 2020


Playing tag with ANN: boosted top identification with pattern recognition
journal, July 2015

  • Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu
  • Journal of High Energy Physics, Vol. 2015, Issue 7
  • DOI: 10.1007/JHEP07(2015)086

CapsNets continuing the convolutional quest
journal, January 2020


Interpretable deep learning for two-prong jet classification with jet spectra
journal, July 2019

  • Chakraborty, Amit; Lim, Sung Hak; Nojiri, Mihoko M.
  • Journal of High Energy Physics, Vol. 2019, Issue 7
  • DOI: 10.1007/JHEP07(2019)135

Searching for exotic particles in high-energy physics with deep learning
journal, July 2014

  • Baldi, P.; Sadowski, P.; Whiteson, D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5308

Towards an understanding of jet substructure
journal, September 2013

  • Dasgupta, Mrinal; Fregoso, Alessandro; Marzani, Simone
  • Journal of High Energy Physics, Vol. 2013, Issue 9
  • DOI: 10.1007/JHEP09(2013)029

Neural network-based top tagger with two-point energy correlations and geometry of soft emissions
journal, July 2020

  • Chakraborty, Amit; Lim, Sung Hak; Nojiri, Mihoko M.
  • Journal of High Energy Physics, Vol. 2020, Issue 7
  • DOI: 10.1007/JHEP07(2020)111

Pileup mitigation at the Large Hadron Collider with graph neural networks
journal, July 2019

  • Arjona Martínez, J.; Cerri, O.; Spiropulu, M.
  • The European Physical Journal Plus, Vol. 134, Issue 7
  • DOI: 10.1140/epjp/i2019-12710-3

QCD-aware recursive neural networks for jet physics
journal, January 2019

  • Louppe, Gilles; Cho, Kyunghyun; Becot, Cyril
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/JHEP01(2019)057

Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV
journal, January 2019

  • Sirunyan, A. M.; Tumasyan, A.; Adam, W.
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/JHEP01(2019)051

A deep neural network to search for new long-lived particles decaying to jets
journal, August 2020


Dijet Resonance Search with Weak Supervision Using s = 13 TeV p p Collisions in the ATLAS Detector
journal, September 2020


Parton shower uncertainties in jet substructure analyses with deep neural networks
journal, January 2017