DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors

Abstract

A liquid of superconducting vortices generates a transverse thermoelectric response. This Nernst signal has a tail deep in the normal state due to superconducting fluctuations. Here, we present a study of the Nernst effect in two-dimensional heterostructures of Nb-doped strontium titanate (STO) and in amorphous MoGe. Additionally, the Nernst signal generated by ephemeral Cooper pairs above the critical temperature has the magnitude expected by theory in STO. On the other hand, the peak amplitude of the vortex Nernst signal below Tc is comparable in both and in numerous other superconductors despite the large distribution of the critical temperature and the critical magnetic fields. In four superconductors belonging to different families, the maximum Nernst signal corresponds to an entropy per vortex per layer of ≈kBln2.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5]; ORCiD logo [6];  [7];  [7]; ORCiD logo [8]
  1. PSL Research Univ., Paris (France). Lab. de Physique et d'Etude des Materiaux; Univ. of Geneva (Switzerland)
  2. PSL Research Univ., Paris (France). Lab. de Physique et d'Etude des Materiaux; Hangzhou Normal Univ. (China). Hangzhou Key Lab. of Quantum Matter
  3. PSL Research Univ., Paris (France). JEIP
  4. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials; National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
  5. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials; Max Planck Inst. for Solid State Research, Stuttgart (Germany)
  6. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials; Univ. of Bristol (United Kingdom). H. H. Wills Physics Lab.
  7. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials
  8. PSL Research Univ., Paris (France). Lab. de Physique et d'Etude des Materiaux
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Research Agency (ANR); National Science Foundation (NSF)
OSTI Identifier:
1777281
Grant/Contract Number:  
ANR-19-CE30-0014-04; ANR-18-CE92-0020-01; AC02-76SF00515; NSF-DMR-1808385
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 126; Journal Issue: 7; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Nernst effect; vortices in superconductors

Citation Formats

Rischau, Carl Willem, Li, Yuke, Fauqué, Benoît, Inoue, Hisashi, Kim, Minu, Bell, Christopher, Hwang, Harold Y., Kapitulnik, Aharon, and Behnia, Kamran. Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors. United States: N. p., 2021. Web. doi:10.1103/physrevlett.126.077001.
Rischau, Carl Willem, Li, Yuke, Fauqué, Benoît, Inoue, Hisashi, Kim, Minu, Bell, Christopher, Hwang, Harold Y., Kapitulnik, Aharon, & Behnia, Kamran. Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors. United States. https://doi.org/10.1103/physrevlett.126.077001
Rischau, Carl Willem, Li, Yuke, Fauqué, Benoît, Inoue, Hisashi, Kim, Minu, Bell, Christopher, Hwang, Harold Y., Kapitulnik, Aharon, and Behnia, Kamran. Tue . "Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors". United States. https://doi.org/10.1103/physrevlett.126.077001. https://www.osti.gov/servlets/purl/1777281.
@article{osti_1777281,
title = {Universal Bound to the Amplitude of the Vortex Nernst Signal in Superconductors},
author = {Rischau, Carl Willem and Li, Yuke and Fauqué, Benoît and Inoue, Hisashi and Kim, Minu and Bell, Christopher and Hwang, Harold Y. and Kapitulnik, Aharon and Behnia, Kamran},
abstractNote = {A liquid of superconducting vortices generates a transverse thermoelectric response. This Nernst signal has a tail deep in the normal state due to superconducting fluctuations. Here, we present a study of the Nernst effect in two-dimensional heterostructures of Nb-doped strontium titanate (STO) and in amorphous MoGe. Additionally, the Nernst signal generated by ephemeral Cooper pairs above the critical temperature has the magnitude expected by theory in STO. On the other hand, the peak amplitude of the vortex Nernst signal below Tc is comparable in both and in numerous other superconductors despite the large distribution of the critical temperature and the critical magnetic fields. In four superconductors belonging to different families, the maximum Nernst signal corresponds to an entropy per vortex per layer of ≈kBln2.},
doi = {10.1103/physrevlett.126.077001},
journal = {Physical Review Letters},
number = 7,
volume = 126,
place = {United States},
year = {Tue Feb 16 00:00:00 EST 2021},
month = {Tue Feb 16 00:00:00 EST 2021}
}

Works referenced in this record:

Intrinsic spin-orbit coupling in superconducting δ -doped SrTiO 3 heterostructures
journal, August 2012


Pseudogap temperature T * of cuprate superconductors from the Nernst effect
journal, February 2018


Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics
journal, March 2005


Minimal quantum viscosity from fundamental physical constants
journal, April 2020


Vortex motion in superconductors
journal, October 1971


Unconventional superconductivity in magic-angle graphene superlattices
journal, March 2018


Vortices in high-temperature superconductors
journal, October 1994


Fermi Surface of the Most Dilute Superconductor
journal, April 2013


Entropy of Vortex Cores Near the Superconductor-Insulator Transition in an Underdoped Cuprate
journal, January 2002


Electrical and thermoelectric study of two-dimensional crystal of NbSe 2
journal, July 2020


The Nernst effect and the boundaries of the Fermi liquid picture
journal, February 2009


Fermi Surface and Superconductivity in Low-Density High-Mobility δ -Doped SrTiO 3
journal, August 2011


Thermomagnetic vortex transport: Transport entropy revisited
journal, October 2010


Decrease of upper critical field with underdoping in cuprate superconductors
journal, August 2012

  • Chang, J.; Doiron-Leyraud, N.; Cyr-Choinière, O.
  • Nature Physics, Vol. 8, Issue 10
  • DOI: 10.1038/nphys2380

Strong correlation and low carrier density in Fe 1 + y Te 0.6 Se 0.4 as seen from its thermoelectric response
journal, January 2011


Two-dimensional normal-state quantum oscillations in a superconducting heterostructure
journal, November 2009

  • Kozuka, Y.; Kim, M.; Bell, C.
  • Nature, Vol. 462, Issue 7272, p. 487-490
  • DOI: 10.1038/nature08566

Galvanomagnetic and Related Effects in Type-II Superconductors
journal, May 1966


Giant Nernst Effect due to Fluctuating Cooper Pairs in Superconductors
journal, February 2009


Superconducting-Insulating Transition in Two-Dimensional a -MoGe Thin Films
journal, April 1995


Seebeck and Nernst effects in the mixed state of the two-band organic superconductors κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br
journal, February 1997


Nernst effect in metals and superconductors: a review of concepts and experiments
journal, March 2016


Observation of the Nernst signal generated by fluctuating Cooper pairs
journal, September 2006

  • Pourret, A.; Aubin, H.; Lesueur, J.
  • Nature Physics, Vol. 2, Issue 10
  • DOI: 10.1038/nphys413

Bound Fermion states on a vortex line in a type II superconductor
journal, May 1964


Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films
journal, May 2013

  • He, Shaolong; He, Junfeng; Zhang, Wenhao
  • Nature Materials, Vol. 12, Issue 7
  • DOI: 10.1038/nmat3648

Nernst effect in the phase-fluctuating superconductor InO x
journal, September 2008


Nernst effect in high- T c superconductors
journal, January 2006


Length scale for the superconducting Nernst signal above T c in Nb 0.15 Si 0.85
journal, December 2007


Transport entropy of vortex motion in YBa 2 Cu 3 O 7
journal, June 1990


Gaussian Superconducting Fluctuations, Thermal Transport, and the Nernst Effect
journal, December 2002


Fluctuations of the superconducting order parameter as an origin of the Nernst effect
journal, April 2009