DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridium-Free Oxygen Evolution Electrocatalysts

Abstract

Abstract This paper describes the use of a new polymer entrapment flash pyrolysis (PEFP) method for making nanoscale yttrium ruthenate (Y 2 Ru 2 O 7‐δ ) electrocatalysts. This approach effectively reduced the synthesis temperature of phase‐pure pyrochlore catalysts from 1000 °C to 550 °C, and greatly suppressed the sintering of catalyst particles. The supported nanocrystalline Y 2 Ru 2 O 7‐δ catalysts showed enhanced activity towards oxygen evolution reaction (OER) in acidic electrolyte and were stable at 1.50 V for the comparative study (>20 h) under the current density of 10 mA/cm 2 geo in chronopotentiometry testing. This is equivalent to an overpotential value of 270 mV, about half of that of the reference IrO 2 catalyst. X‐ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analysis showed that the high‐surface‐area Y 2 Ru 2 O 7‐δ catalyst had an oxygen‐deficient structure. This study provides a route to the synthesis of fine ceramic (or oxide)‐based electrocatalysts for making high‐performing electrocatalysts.

Authors:
 [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Univ. of Illinois at Urbana-Champaign, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1774242
Alternate Identifier(s):
OSTI ID: 1615032
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ChemNanoMat
Additional Journal Information:
Journal Volume: 6; Journal Issue: 6; Journal ID: ISSN 2199-692X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; pyrochlore; yttrium ruthenate; nanocrystalline; oxygen evolution electrocatalyst; polymer entrapment

Citation Formats

Shih, Pei‐Chieh, Zhang, Cheng, Raheja, Harshit, Sun, Cheng‐Jun, and Yang, Hong. Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridium-Free Oxygen Evolution Electrocatalysts. United States: N. p., 2020. Web. doi:10.1002/cnma.202000124.
Shih, Pei‐Chieh, Zhang, Cheng, Raheja, Harshit, Sun, Cheng‐Jun, & Yang, Hong. Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridium-Free Oxygen Evolution Electrocatalysts. United States. https://doi.org/10.1002/cnma.202000124
Shih, Pei‐Chieh, Zhang, Cheng, Raheja, Harshit, Sun, Cheng‐Jun, and Yang, Hong. Mon . "Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridium-Free Oxygen Evolution Electrocatalysts". United States. https://doi.org/10.1002/cnma.202000124. https://www.osti.gov/servlets/purl/1774242.
@article{osti_1774242,
title = {Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridium-Free Oxygen Evolution Electrocatalysts},
author = {Shih, Pei‐Chieh and Zhang, Cheng and Raheja, Harshit and Sun, Cheng‐Jun and Yang, Hong},
abstractNote = {Abstract This paper describes the use of a new polymer entrapment flash pyrolysis (PEFP) method for making nanoscale yttrium ruthenate (Y 2 Ru 2 O 7‐δ ) electrocatalysts. This approach effectively reduced the synthesis temperature of phase‐pure pyrochlore catalysts from 1000 °C to 550 °C, and greatly suppressed the sintering of catalyst particles. The supported nanocrystalline Y 2 Ru 2 O 7‐δ catalysts showed enhanced activity towards oxygen evolution reaction (OER) in acidic electrolyte and were stable at 1.50 V for the comparative study (>20 h) under the current density of 10 mA/cm 2 geo in chronopotentiometry testing. This is equivalent to an overpotential value of 270 mV, about half of that of the reference IrO 2 catalyst. X‐ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analysis showed that the high‐surface‐area Y 2 Ru 2 O 7‐δ catalyst had an oxygen‐deficient structure. This study provides a route to the synthesis of fine ceramic (or oxide)‐based electrocatalysts for making high‐performing electrocatalysts.},
doi = {10.1002/cnma.202000124},
journal = {ChemNanoMat},
number = 6,
volume = 6,
place = {United States},
year = {Mon Mar 23 00:00:00 EDT 2020},
month = {Mon Mar 23 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Oxide-Supported IrNiO x Core-Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting
journal, January 2015

  • Nong, Hong Nhan; Oh, Hyung-Suk; Reier, Tobias
  • Angewandte Chemie, Vol. 127, Issue 10
  • DOI: 10.1002/ange.201411072

Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers
journal, December 2018


Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation
journal, May 2017

  • Spöri, Camillo; Kwan, Jason Tai Hong; Bonakdarpour, Arman
  • Angewandte Chemie International Edition, Vol. 56, Issue 22
  • DOI: 10.1002/anie.201608601

Single-Phase Pyrochlore Y 2 Ir 2 O 7 Electrocatalyst on the Activity of Oxygen Evolution Reaction
journal, July 2018

  • Shih, Pei-Chieh; Kim, Jaemin; Sun, Cheng-Jun
  • ACS Applied Energy Materials, Vol. 1, Issue 8
  • DOI: 10.1021/acsaem.8b00691

A Janus Nickel Cobalt Phosphide Catalyst for High‐Efficiency Neutral‐pH Water Splitting
journal, November 2018


Synthesis of oxide powders by way of a polymeric steric entrapment precursor route
journal, August 1999

  • Nguyen, My H.; Lee, Sang-Jin; Kriven, Waltraud M.
  • Journal of Materials Research, Vol. 14, Issue 8
  • DOI: 10.1557/JMR.1999.0462

Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction
journal, May 2017


Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments
journal, October 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee Chul
  • Angewandte Chemie International Edition, Vol. 53, Issue 51
  • DOI: 10.1002/anie.201406455

Computational predictions of energy materials using density functional theory
journal, January 2016


Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air Battery Electrodes
journal, March 2013

  • Hardin, William G.; Slanac, Daniel A.; Wang, Xiqing
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400595z

OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates
journal, December 2016

  • Sun, Wei; Liu, Ji-Yuan; Gong, Xue-Qing
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38429

A Porous Pyrochlore Y 2 [Ru 1.6 Y 0.4 ]O 7– δ Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media
journal, October 2018

  • Kim, Jaemin; Shih, Pei‐Chieh; Qin, Yao
  • Angewandte Chemie International Edition, Vol. 57, Issue 42
  • DOI: 10.1002/anie.201808825

Valence properties of Cu and Ru in titanium-substituted LnCu 3 Ru 4 O 12+δ (Ln = La, Pr, Nd) investigated by XANES and TGA
journal, January 2015

  • Riegg, Stefan; Reller, Armin; Loidl, Alois
  • Dalton Transactions, Vol. 44, Issue 23
  • DOI: 10.1039/C4DT03876B

Pyrochlore electrocatalysts for efficient alkaline water electrolysis
journal, January 2015

  • Parrondo, Javier; George, Morgan; Capuano, Christopher
  • Journal of Materials Chemistry A, Vol. 3, Issue 20
  • DOI: 10.1039/C5TA01771H

High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media
journal, August 2017

  • Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b06808

Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts
journal, March 2016

  • Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11053

A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
journal, September 2016


Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores
journal, September 2014

  • Sardar, Kripasindhu; Petrucco, Enrico; Hiley, Craig I.
  • Angewandte Chemie, Vol. 126, Issue 41
  • DOI: 10.1002/ange.201406668

Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores
journal, September 2014

  • Sardar, Kripasindhu; Petrucco, Enrico; Hiley, Craig I.
  • Angewandte Chemie International Edition, Vol. 53, Issue 41
  • DOI: 10.1002/anie.201406668

A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution
journal, December 2017

  • Yu, Le; Yang, Jing Fan; Guan, Bu Yuan
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201710877

FeN 4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium
journal, August 2018

  • Lei, Chaojun; Chen, Hengquan; Cao, Junhui
  • Advanced Energy Materials, Vol. 8, Issue 26
  • DOI: 10.1002/aenm.201801912

Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting
journal, June 2018


Synthesis of LiFePO 4 powder by the organic–inorganic steric entrapment method
journal, July 2015

  • Ribero, Daniel; Kriven, Waltraud M.
  • Journal of Materials Research, Vol. 30, Issue 14
  • DOI: 10.1557/jmr.2015.181

Emerging Two-Dimensional Nanomaterials for Electrocatalysis
journal, March 2018


Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

Perovskites in catalysis and electrocatalysis
journal, November 2017


Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries
journal, November 2012

  • Oh, Si Hyoung; Black, Robert; Pomerantseva, Ekaterina
  • Nature Chemistry, Vol. 4, Issue 12, p. 1004-1010
  • DOI: 10.1038/nchem.1499

Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO x Nanoparticle Catalysts during the Oxygen Evolution Reaction
journal, September 2016

  • Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b07199

IrO 2 Coated on RuO 2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting
journal, February 2016

  • Audichon, Thomas; Napporn, Teko W.; Canaff, Christine
  • The Journal of Physical Chemistry C, Vol. 120, Issue 5
  • DOI: 10.1021/acs.jpcc.5b11868

A General Method to Probe Oxygen Evolution Intermediates at Operating Conditions
journal, June 2019


In Situ Formation of Cobalt Oxide Nanocubanes as Efficient Oxygen Evolution Catalysts
journal, March 2015

  • Hutchings, Gregory S.; Zhang, Yan; Li, Jian
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/jacs.5b01006

Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method
journal, June 2005


Bismuth Iridium Oxide Oxygen Evolution Catalyst from Hydrothermal Synthesis
journal, October 2012

  • Sardar, Kripasindhu; Ball, Sarah C.; Sharman, Jonathan D. B.
  • Chemistry of Materials, Vol. 24, Issue 21
  • DOI: 10.1021/cm302468b

Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting
journal, September 2019


Origin of additional capacities in metal oxide lithium-ion battery electrodes
journal, November 2013

  • Hu, Yan-Yan; Liu, Zigeng; Nam, Kyung-Wan
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3784

Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO 2 for Next Generation Supercapacitors
journal, December 2006

  • Hu, Chi-Chang; Chang, Kuo-Hsin; Lin, Ming-Champ
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl061576a

Oxide-Supported IrNiO x Core-Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting
journal, January 2015

  • Nong, Hong Nhan; Oh, Hyung-Suk; Reier, Tobias
  • Angewandte Chemie International Edition, Vol. 54, Issue 10
  • DOI: 10.1002/anie.201411072

Iridium-based double perovskites for efficient water oxidation in acid media
journal, August 2016

  • Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12363

Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments
journal, October 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee Chul
  • Angewandte Chemie, Vol. 126, Issue 51, p. 14240-14245
  • DOI: 10.1002/ange.201406455

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


W-Doped CaMnO 2.5 and CaMnO 3 Electrocatalysts for Enhanced Performance in Oxygen Evolution and Reduction Reactions
journal, January 2017

  • Kim, Jaemin; Chen, Xuxia; Pan, Yung-Tin
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.0471712jes

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

Surface protonation and electrochemical activity of oxides in aqueous solution
journal, March 1990

  • Goodenough, John B.; Manoharan, R.; Paranthaman, M.
  • Journal of the American Chemical Society, Vol. 112, Issue 6
  • DOI: 10.1021/ja00162a006

Oxygen Evolution Reaction—The Enigma in Water Electrolysis
journal, September 2018


Role of Lattice Oxygen Participation in Understanding Trends in the Oxygen Evolution Reaction on Perovskites
journal, April 2018