DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model

Abstract

Stratospheric ozone affects climate directly as the predominant heat source in the stratosphere and indirectly through chemical reactions controlling other greenhouse gases. The U.S. Department of Energy's Energy Exascale Earth System Model version 1 (E3SMv1) implemented a new ozone chemistry module that improves the simulation of the sharp tropopause gradients, replacing a version based partly on long-term average climatologies that poorly represented heating rates in the lowermost stratosphere. The new O3v2 module extends seamlessly into the troposphere and preserves the naturally sharp cross-tropopause gradient, with 20 %–40 % less ozone in this region. Additionally, O3v2 enables the diagnosis of stratosphere–troposphere exchange flux of ozone, a key budget term lacking in E3SMv1. Here, we evaluate key features in ozone abundance and other closely related quantities in atmosphere-only E3SMv1 simulations driven by observed sea surface temperatures (SSTs, years 1990–2014), comparing them with satellite observations of ozone and also with the University of California, Irvine chemistry transport model (UCI CTM) using the same stratospheric chemistry scheme but driven by European Centre forecast fields for the same period. In terms of stratospheric column ozone, O3v2 shows reduced mean bias and improved northern midlatitude variability, but it is not quite as good as the UCI CTM.more » As expected, SST-forced E3SMv1 simulations cannot synchronize with observed quasi-biennial oscillations (QBOs), but they do show the typical QBO pattern seen in column ozone. This new O3v2 E3SMv1 model mostly retains the same climate state and climate sensitivity as the previous version, and we recommend its use for other climate models that still use ozone climatologies.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [2]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of California, Irvine, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Biological and Environmental Research (BER); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1769122
Report Number(s):
LLNL-JRNL-813913
Journal ID: ISSN 1991-9603; 1022252
Grant/Contract Number:  
AC52-07NA27344; AC02-05CH11231; AC05-76RL01830; 80NSSC20K1237
Resource Type:
Accepted Manuscript
Journal Name:
Geoscientific Model Development (Online)
Additional Journal Information:
Journal Name: Geoscientific Model Development (Online); Journal Volume: 14; Journal Issue: 3; Journal ID: ISSN 1991-9603
Publisher:
Copernicus Publications, EGU
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Tang, Qi, Prather, Michael J., Hsu, Juno, Ruiz, Daniel J., Cameron-Smith, Philip J., Xie, Shaocheng, and Golaz, Jean-Christophe. Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model. United States: N. p., 2021. Web. doi:10.5194/gmd-14-1219-2021.
Tang, Qi, Prather, Michael J., Hsu, Juno, Ruiz, Daniel J., Cameron-Smith, Philip J., Xie, Shaocheng, & Golaz, Jean-Christophe. Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model. United States. https://doi.org/10.5194/gmd-14-1219-2021
Tang, Qi, Prather, Michael J., Hsu, Juno, Ruiz, Daniel J., Cameron-Smith, Philip J., Xie, Shaocheng, and Golaz, Jean-Christophe. Fri . "Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model". United States. https://doi.org/10.5194/gmd-14-1219-2021. https://www.osti.gov/servlets/purl/1769122.
@article{osti_1769122,
title = {Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model},
author = {Tang, Qi and Prather, Michael J. and Hsu, Juno and Ruiz, Daniel J. and Cameron-Smith, Philip J. and Xie, Shaocheng and Golaz, Jean-Christophe},
abstractNote = {Stratospheric ozone affects climate directly as the predominant heat source in the stratosphere and indirectly through chemical reactions controlling other greenhouse gases. The U.S. Department of Energy's Energy Exascale Earth System Model version 1 (E3SMv1) implemented a new ozone chemistry module that improves the simulation of the sharp tropopause gradients, replacing a version based partly on long-term average climatologies that poorly represented heating rates in the lowermost stratosphere. The new O3v2 module extends seamlessly into the troposphere and preserves the naturally sharp cross-tropopause gradient, with 20 %–40 % less ozone in this region. Additionally, O3v2 enables the diagnosis of stratosphere–troposphere exchange flux of ozone, a key budget term lacking in E3SMv1. Here, we evaluate key features in ozone abundance and other closely related quantities in atmosphere-only E3SMv1 simulations driven by observed sea surface temperatures (SSTs, years 1990–2014), comparing them with satellite observations of ozone and also with the University of California, Irvine chemistry transport model (UCI CTM) using the same stratospheric chemistry scheme but driven by European Centre forecast fields for the same period. In terms of stratospheric column ozone, O3v2 shows reduced mean bias and improved northern midlatitude variability, but it is not quite as good as the UCI CTM. As expected, SST-forced E3SMv1 simulations cannot synchronize with observed quasi-biennial oscillations (QBOs), but they do show the typical QBO pattern seen in column ozone. This new O3v2 E3SMv1 model mostly retains the same climate state and climate sensitivity as the previous version, and we recommend its use for other climate models that still use ozone climatologies.},
doi = {10.5194/gmd-14-1219-2021},
journal = {Geoscientific Model Development (Online)},
number = 3,
volume = 14,
place = {United States},
year = {Fri Mar 05 00:00:00 EST 2021},
month = {Fri Mar 05 00:00:00 EST 2021}
}

Works referenced in this record:

The Effects of a 1998 Observing System Change on MERRA‐2‐Based Ozone Profile Simulations
journal, July 2019

  • Stauffer, Ryan M.; Thompson, Anne M.; Oman, Luke D.
  • Journal of Geophysical Research: Atmospheres
  • DOI: 10.1029/2019JD030257

An atmospheric chemist in search of the tropopause
journal, January 2011

  • Prather, Michael J.; Zhu, Xin; Tang, Qi
  • Journal of Geophysical Research, Vol. 116, Issue D4
  • DOI: 10.1029/2010JD014939

Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models
journal, August 1989


Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change
journal, January 2017

  • Douglass, Anne R.; Strahan, Susan E.; Oman, Luke D.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 19
  • DOI: 10.5194/acp-17-12081-2017

Long-term ozone changes and associated climate impacts in CMIP5 simulations: OZONE AND ASSOCIATED CLIMATE IMPACTS
journal, May 2013

  • Eyring, V.; Arblaster, J. M.; Cionni, I.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 10
  • DOI: 10.1002/jgrd.50316

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution
journal, July 2019

  • Golaz, Jean‐Christophe; Caldwell, Peter M.; Van Roekel, Luke P.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
  • DOI: 10.1029/2018MS001603

An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere
journal, January 1994

  • Murphy, D. M.; Fahey, D. W.
  • Journal of Geophysical Research, Vol. 99, Issue D3
  • DOI: 10.1029/93JD03558

Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere
journal, January 2020

  • Liu, Junhua; Rodriguez, Jose M.; Oman, Luke D.
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 11
  • DOI: 10.5194/acp-20-6417-2020

Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux
journal, June 2000

  • McLinden, C. A.; Olsen, S. C.; Hannegan, B.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D11
  • DOI: 10.1029/2000JD900124

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
journal, January 2016

  • Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.
  • Geoscientific Model Development, Vol. 9, Issue 5
  • DOI: 10.5194/gmd-9-1937-2016

An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
journal, August 2019

  • Rasch, P. J.; Xie, S.; Ma, P. ‐L.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 8
  • DOI: 10.1029/2019MS001629

Earth Observing System missions benefit atmospheric research
journal, January 2004

  • Schoeberl, M. R.; Douglass, A. R.; Hilsenrath, E.
  • Eos, Transactions American Geophysical Union, Vol. 85, Issue 18
  • DOI: 10.1029/2004EO180001

The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution
journal, December 2019

  • Caldwell, Peter M.; Mametjanov, Azamat; Tang, Qi
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
  • DOI: 10.1029/2019MS001870

Stratospheric N 2 O-NO y system: Testing uncertainties in a three-dimensional framework
journal, November 2001

  • Olsen, S. C.; McLinden, C. A.; Prather, M. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D22
  • DOI: 10.1029/2001JD000559

Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model
journal, October 2018

  • Xie, Shaocheng; Lin, Wuyin; Rasch, Philip J.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 10
  • DOI: 10.1029/2018MS001350

Atmospheric composition change: Climate–Chemistry interactions
journal, October 2009


Diagnosing the stratosphere-to-troposphere flux of ozone in a chemistry transport model
journal, January 2005


Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation
journal, January 2019

  • Ziemke, Jerry R.; Oman, Luke D.; Strode, Sarah A.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 5
  • DOI: 10.5194/acp-19-3257-2019

Interactive ozone induces a negative feedback in CO 2 -driven climate change simulations
journal, February 2014

  • Dietmüller, S.; Ponater, M.; Sausen, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 4
  • DOI: 10.1002/2013JD020575

Impact of Nudging Strategy on the Climate Representativeness and Hindcast Skill of Constrained EAMv1 Simulations
journal, December 2019

  • Sun, Jian; Zhang, Kai; Wan, Hui
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
  • DOI: 10.1029/2019MS001831

An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications
journal, July 2011


A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes
journal, January 1990

  • Cariolle, D.; Lasserre-Bigorry, A.; Royer, J. -F.
  • Journal of Geophysical Research, Vol. 95, Issue D2
  • DOI: 10.1029/JD095iD02p01883

Atmospheric chemistry-climate feedbacks
journal, January 2010

  • Raes, Frank; Liao, Hong; Chen, Wei-Ting
  • Journal of Geophysical Research, Vol. 115, Issue D12
  • DOI: 10.1029/2009JD013300

Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis
journal, April 2017


Five blind men and the elephant: what can the NASA Aura ozone measurements tell us about stratosphere-troposphere exchange?
journal, January 2012


Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling
journal, January 2019

  • Tang, Qi; Klein, Stephen A.; Xie, Shaocheng
  • Geoscientific Model Development, Vol. 12, Issue 7
  • DOI: 10.5194/gmd-12-2679-2019

Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx: PINATUBO AND STRATOSPHERIC OZONE INFLUX
journal, October 2013

  • Tang, Qi; Hess, Peter G.; Brown-Steiner, Benjamin
  • Geophysical Research Letters, Vol. 40, Issue 20
  • DOI: 10.1002/2013GL056563

A large ozone-circulation feedback and its implications for global warming assessments
journal, December 2014

  • Nowack, Peer J.; Luke Abraham, N.; Maycock, Amanda C.
  • Nature Climate Change, Vol. 5, Issue 1
  • DOI: 10.1038/nclimate2451

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics
journal, January 2013

  • Lamarque, J. -F.; Shindell, D. T.; Josse, B.
  • Geoscientific Model Development, Vol. 6, Issue 1
  • DOI: 10.5194/gmd-6-179-2013

Stratosphere-troposphere exchange of mass and ozone
journal, January 2004


Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model
journal, January 2006

  • Ziemke, J. R.; Chandra, S.; Duncan, B. N.
  • Journal of Geophysical Research, Vol. 111, Issue D19
  • DOI: 10.1029/2006JD007089

Global atmospheric chemistry – which air matters
journal, January 2017

  • Prather, Michael J.; Zhu, Xin; Flynn, Clare M.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 14
  • DOI: 10.5194/acp-17-9081-2017

Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere
journal, January 2009

  • Aschmann, J.; Sinnhuber, B. -M.; Atlas, E. L.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 23
  • DOI: 10.5194/acp-9-9237-2009

Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data: IAV OF LIGHTNING CONSTRAINED BY LIS/OTD
journal, October 2012

  • Murray, Lee T.; Jacob, Daniel J.; Logan, Jennifer A.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D20
  • DOI: 10.1029/2012JD017934

Performance of the Ozone Mapping and Profiler Suite (OMPS) products: OMPS OZONE PRODUCTS
journal, May 2014

  • Flynn, L.; Long, C.; Wu, X.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 10
  • DOI: 10.1002/2013JD020467

The Role of Eddies in Driving the Tropospheric Response to Stratospheric Heating Perturbations
journal, May 2009

  • Simpson, Isla R.; Blackburn, Michael; Haigh, Joanna D.
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 5
  • DOI: 10.1175/2008JAS2758.1

Sensitivity of stratospheric dynamics to uncertainty in O 3 production : SENSITIVITY OF STRAT. DYNAMICS TO UNCERTAINTY IN O
journal, August 2013

  • Hsu, Juno; Prather, Michael J.; Bergmann, Dan
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 16
  • DOI: 10.1002/jgrd.50689

Stratospheric variability and tropospheric ozone
journal, January 2009

  • Hsu, Juno; Prather, Michael J.
  • Journal of Geophysical Research, Vol. 114, Issue D6
  • DOI: 10.1029/2008JD010942

Works referencing / citing this record:

The E3SM Diagnostics Package (E3SM Diags v2.6): A Python-based Diagnostics Package for Earth System Models Evaluation
journal, April 2022

  • Zhang, Chengzhu; Golaz, Jean-Christophe; Forsyth, Ryan
  • Geoscientific Model Development Discussions
  • DOI: 10.5194/gmd-2022-38