DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The molecular basis for recognition of 5'-NNNCC-3' PAM and its methylation state by Acidothermus cellulolyticus Cas9

Abstract

Acidothermus cellulolyticus CRISPR-Cas9 (AceCas9) is a thermophilic Type II-C enzyme that has potential genome editing applications in extreme environments. It cleaves DNA with a 5'-NNNCC-3' Protospacer Adjacent Motif (PAM) and is sensitive to its methylation status. To understand the molecular basis for the high specificity of AceCas9 for its PAM, we determined two crystal structures of AceCas9 lacking its HNH domain (AceCas9-ΔHNH) bound with a single guide RNA and DNA substrates, one with the correct and the other with an incorrect PAM. Three residues, Glu1044, Arg1088, Arg1091, form an intricate hydrogen bond network with the first cytosine and the two opposing guanine nucleotides to confer specificity. Methylation of the first but not the second cytosine base abolishes AceCas9 activity, consistent with the observed PAM recognition pattern. The high sensitivity of AceCas9 to the modified cytosine makes it a potential device for detecting epigenomic changes in genomes.

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]
  1. Florida State Univ., Tallahassee, FL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
Sponsoring Org.:
National Institutes of Health (NIH); National Institute of General Medical Sciences (NIGMS); Office of Research Infrastructure Programs (ORIP); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1763125
Grant/Contract Number:  
R01 GM099604; S10 RR029205; S10OD021527; AC02-06CH11357; SC0012704; P41GM111244; KP1605010
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 11; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; CRISPR-Cas systems; DNA; DNA methylation; X-ray crystallography

Citation Formats

Das, Anuska, Hand, Travis H., Smith, Chardasia L., Wickline, Ethan, Zawrotny, Michael, and Li, Hong. The molecular basis for recognition of 5'-NNNCC-3' PAM and its methylation state by Acidothermus cellulolyticus Cas9. United States: N. p., 2020. Web. doi:10.1038/s41467-020-20204-1.
Das, Anuska, Hand, Travis H., Smith, Chardasia L., Wickline, Ethan, Zawrotny, Michael, & Li, Hong. The molecular basis for recognition of 5'-NNNCC-3' PAM and its methylation state by Acidothermus cellulolyticus Cas9. United States. https://doi.org/10.1038/s41467-020-20204-1
Das, Anuska, Hand, Travis H., Smith, Chardasia L., Wickline, Ethan, Zawrotny, Michael, and Li, Hong. Fri . "The molecular basis for recognition of 5'-NNNCC-3' PAM and its methylation state by Acidothermus cellulolyticus Cas9". United States. https://doi.org/10.1038/s41467-020-20204-1. https://www.osti.gov/servlets/purl/1763125.
@article{osti_1763125,
title = {The molecular basis for recognition of 5'-NNNCC-3' PAM and its methylation state by Acidothermus cellulolyticus Cas9},
author = {Das, Anuska and Hand, Travis H. and Smith, Chardasia L. and Wickline, Ethan and Zawrotny, Michael and Li, Hong},
abstractNote = {Acidothermus cellulolyticus CRISPR-Cas9 (AceCas9) is a thermophilic Type II-C enzyme that has potential genome editing applications in extreme environments. It cleaves DNA with a 5'-NNNCC-3' Protospacer Adjacent Motif (PAM) and is sensitive to its methylation status. To understand the molecular basis for the high specificity of AceCas9 for its PAM, we determined two crystal structures of AceCas9 lacking its HNH domain (AceCas9-ΔHNH) bound with a single guide RNA and DNA substrates, one with the correct and the other with an incorrect PAM. Three residues, Glu1044, Arg1088, Arg1091, form an intricate hydrogen bond network with the first cytosine and the two opposing guanine nucleotides to confer specificity. Methylation of the first but not the second cytosine base abolishes AceCas9 activity, consistent with the observed PAM recognition pattern. The high sensitivity of AceCas9 to the modified cytosine makes it a potential device for detecting epigenomic changes in genomes.},
doi = {10.1038/s41467-020-20204-1},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United States},
year = {Fri Dec 11 00:00:00 EST 2020},
month = {Fri Dec 11 00:00:00 EST 2020}
}

Works referenced in this record:

Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation
journal, February 2014


Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States
journal, December 2019


Diversity and evolution of class 2 CRISPR–Cas systems
journal, January 2017

  • Shmakov, Sergey; Smargon, Aaron; Scott, David
  • Nature Reviews Microbiology, Vol. 15, Issue 3
  • DOI: 10.1038/nrmicro.2016.184

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering
journal, January 2016


Applications of CRISPR–Cas systems in neuroscience
journal, December 2015

  • Heidenreich, Matthias; Zhang, Feng
  • Nature Reviews Neuroscience, Vol. 17, Issue 1
  • DOI: 10.1038/nrn.2015.2

Crystal Structure of Staphylococcus aureus Cas9
journal, August 2015


Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum
journal, June 2020

  • Walker, Julie E.; Lanahan, Anthony A.; Zheng, Tianyong
  • Metabolic Engineering Communications, Vol. 10
  • DOI: 10.1016/j.mec.2019.e00116

Directed evolution studies of a thermophilic Type II-C Cas9
book, December 2018


Automated data collection for macromolecular crystallography
journal, September 2011


Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
journal, November 2015

  • Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.
  • Nature Biotechnology, Vol. 33, Issue 12
  • DOI: 10.1038/nbt.3404

Epigenetics of colorectal cancer: biomarker and therapeutic potential
journal, January 2020

  • Jung, Gerhard; Hernández-Illán, Eva; Moreira, Leticia
  • Nature Reviews Gastroenterology & Hepatology, Vol. 17, Issue 2
  • DOI: 10.1038/s41575-019-0230-y

The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9
journal, March 2017

  • Tsui, Tsz Kin Martin; Hand, Travis H.; Duboy, Emily C.
  • ACS Synthetic Biology, Vol. 6, Issue 6
  • DOI: 10.1021/acssynbio.7b00050

Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain
journal, December 2013

  • Guo, Junjie U.; Su, Yijing; Shin, Joo Heon
  • Nature Neuroscience, Vol. 17, Issue 2
  • DOI: 10.1038/nn.3607

Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
journal, October 2019

  • Liebschner, Dorothee; Afonine, Pavel V.; Baker, Matthew L.
  • Acta Crystallographica Section D Structural Biology, Vol. 75, Issue 10
  • DOI: 10.1107/S2059798319011471

CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR
journal, August 2017


RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
journal, November 2013


Structure and Engineering of Francisella novicida Cas9
journal, February 2016


Phosphate Lock Residues of Acidothermus cellulolyticus Cas9 Are Critical to Its Substrate Specificity
journal, November 2018


Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
journal, July 2014

  • Anders, Carolin; Niewoehner, Ole; Duerst, Alessia
  • Nature, Vol. 513, Issue 7519
  • DOI: 10.1038/nature13579

DNA Restriction and Modification Mechanisms in Bacteria
journal, October 1971


Development and Applications of CRISPR-Cas9 for Genome Engineering
journal, June 2014


Integration, scaling, space-group assignment and post-refinement
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 133-144
  • DOI: 10.1107/S0907444909047374

High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects
journal, January 2016

  • Kleinstiver, Benjamin P.; Pattanayak, Vikram; Prew, Michelle S.
  • Nature, Vol. 529, Issue 7587
  • DOI: 10.1038/nature16526

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Engineered CRISPR-Cas9 nucleases with altered PAM specificities
journal, June 2015

  • Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.
  • Nature, Vol. 523, Issue 7561
  • DOI: 10.1038/nature14592

RNA-programmed genome editing in human cells
journal, January 2013

  • Jinek, Martin; East, Alexandra; Cheng, Aaron
  • eLife, Vol. 2, Article No. e00471
  • DOI: 10.7554/eLife.00471

Applications of CRISPR technologies in research and beyond
journal, September 2016

  • Barrangou, Rodolphe; Doudna, Jennifer A.
  • Nature Biotechnology, Vol. 34, Issue 9
  • DOI: 10.1038/nbt.3659

DNA targeting specificity of RNA-guided Cas9 nucleases
journal, July 2013

  • Hsu, Patrick D.; Scott, David A.; Weinstein, Joshua A.
  • Nature Biotechnology, Vol. 31, Issue 9, p. 827-832
  • DOI: 10.1038/nbt.2647

Rationally engineered Cas9 nucleases with improved specificity
journal, December 2015


Function and information content of DNA methylation
journal, January 2015


Cas9 as a versatile tool for engineering biology
journal, September 2013

  • Mali, Prashant; Esvelt, Kevin M.; Church, George M.
  • Nature Methods, Vol. 10, Issue 10
  • DOI: 10.1038/nmeth.2649

Mammalian Non-CpG Methylation: Stem Cells and Beyond
journal, November 2014


Type II-C CRISPR-Cas9 Biology, Mechanism, and Application
journal, September 2017


DNA Methylation: Shared and Divergent Features across Eukaryotes
journal, November 2019


Establishing, maintaining and modifying DNA methylation patterns in plants and animals
journal, February 2010

  • Law, Julie A.; Jacobsen, Steven E.
  • Nature Reviews Genetics, Vol. 11, Issue 3
  • DOI: 10.1038/nrg2719

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases
journal, April 2016

  • Tsai, Shengdar Q.; Joung, J. Keith
  • Nature Reviews Genetics, Vol. 17, Issue 5
  • DOI: 10.1038/nrg.2016.28

Phaser.MRage : automated molecular replacement
journal, October 2013

  • Bunkóczi, Gábor; Echols, Nathaniel; McCoy, Airlie J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 11
  • DOI: 10.1107/S0907444913022750

Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9
journal, April 2019

  • Hirano, Seiichi; Abudayyeh, Omar O.; Gootenberg, Jonathan S.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-09741-6

Human non-CG methylation: Are human stem cells plant-like?
journal, October 2010

  • Dyachenko, Olga V.; Schevchuk, Tara V.; Kretzner, Leo
  • Epigenetics, Vol. 5, Issue 7
  • DOI: 10.4161/epi.5.7.12702

The Computational Crystallography Toolbox : crystallographic algorithms in a reusable software framework
journal, January 2002

  • Grosse-Kunstleve, Ralf W.; Sauter, Nicholas K.; Moriarty, Nigel W.
  • Journal of Applied Crystallography, Vol. 35, Issue 1
  • DOI: 10.1107/S0021889801017824

RNA-guided genetic silencing systems in bacteria and archaea
journal, February 2012

  • Wiedenheft, Blake; Sternberg, Samuel H.; Doudna, Jennifer A.
  • Nature, Vol. 482, Issue 7385, p. 331-338
  • DOI: 10.1038/nature10886

RNA-Guided Human Genome Engineering via Cas9
journal, January 2013


Multiplex Genome Engineering Using CRISPR/Cas Systems
journal, January 2013


CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
journal, August 2013

  • Mali, Prashant; Aach, John; Stranges, P. Benjamin
  • Nature Biotechnology, Vol. 31, Issue 9
  • DOI: 10.1038/nbt.2675

Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems
journal, March 2017


In vivo genome editing using Staphylococcus aureus Cas9
journal, April 2015


CRISPR/Cas9-Mediated Phage Resistance Is Not Impeded by the DNA Modifications of Phage T4
journal, June 2014


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

DNA Modification and Restriction
journal, June 1969