DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A higher voltage Fe(II) bipyridine complex for non-aqueous redox flow batteries

Abstract

Non-aqueous redox flow batteries (RFBs) offer the possibility of higher voltage and a wider working temperature range than their aqueous counterpart. In this study, we optimize the established 2.26 V Fe(bpy)3(BF4)2/Ni(bpy)3(BF4)2 asymmetric RFB to lessen capacity fade and improve energy efficiency over 20 cycles. We also prepared a family of substituted Fe(bpyR)3(BF4)2 complexes (R = –CF3, –CO2Me, –Br, –H, –tBu, –Me, –OMe, –NH2) to potentially achieve a higher voltage RFB by systematically tuning the redox potential of Fe(bpyR)3(BF4)2, from 0.94 V vs. Ag/AgCl for R = OMe to 1.65 V vs. Ag/AgCl for R = CF3 (ΔV = 0.7 V). A series of electronically diverse symmetric and asymmetric RFBs were compared and contrasted to study electroactive species stability and efficiency, in which the unsubstituted Fe(bpy)3(BF4)2 exhibited the highest stability as a catholyte in both symmetric and asymmetric cells with voltage and coulombic efficiencies of 94.0% and 96.5%, and 90.7% and 80.7%, respectively.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1760461
Alternate Identifier(s):
OSTI ID: 1737712
Report Number(s):
SAND-2020-11070J
Journal ID: ISSN 1477-9226; 691487
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Dalton Transactions
Additional Journal Information:
Journal Volume: 50; Journal Issue: 3; Journal ID: ISSN 1477-9226
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Cammack, Claudina X., Pratt, Harry D., Small, Leo J., and Anderson, Travis M. A higher voltage Fe(II) bipyridine complex for non-aqueous redox flow batteries. United States: N. p., 2020. Web. doi:10.1039/d0dt03927f.
Cammack, Claudina X., Pratt, Harry D., Small, Leo J., & Anderson, Travis M. A higher voltage Fe(II) bipyridine complex for non-aqueous redox flow batteries. United States. https://doi.org/10.1039/d0dt03927f
Cammack, Claudina X., Pratt, Harry D., Small, Leo J., and Anderson, Travis M. Mon . "A higher voltage Fe(II) bipyridine complex for non-aqueous redox flow batteries". United States. https://doi.org/10.1039/d0dt03927f. https://www.osti.gov/servlets/purl/1760461.
@article{osti_1760461,
title = {A higher voltage Fe(II) bipyridine complex for non-aqueous redox flow batteries},
author = {Cammack, Claudina X. and Pratt, Harry D. and Small, Leo J. and Anderson, Travis M.},
abstractNote = {Non-aqueous redox flow batteries (RFBs) offer the possibility of higher voltage and a wider working temperature range than their aqueous counterpart. In this study, we optimize the established 2.26 V Fe(bpy)3(BF4)2/Ni(bpy)3(BF4)2 asymmetric RFB to lessen capacity fade and improve energy efficiency over 20 cycles. We also prepared a family of substituted Fe(bpyR)3(BF4)2 complexes (R = –CF3, –CO2Me, –Br, –H, –tBu, –Me, –OMe, –NH2) to potentially achieve a higher voltage RFB by systematically tuning the redox potential of Fe(bpyR)3(BF4)2, from 0.94 V vs. Ag/AgCl for R = OMe to 1.65 V vs. Ag/AgCl for R = CF3 (ΔV = 0.7 V). A series of electronically diverse symmetric and asymmetric RFBs were compared and contrasted to study electroactive species stability and efficiency, in which the unsubstituted Fe(bpy)3(BF4)2 exhibited the highest stability as a catholyte in both symmetric and asymmetric cells with voltage and coulombic efficiencies of 94.0% and 96.5%, and 90.7% and 80.7%, respectively.},
doi = {10.1039/d0dt03927f},
journal = {Dalton Transactions},
number = 3,
volume = 50,
place = {United States},
year = {Mon Dec 14 00:00:00 EST 2020},
month = {Mon Dec 14 00:00:00 EST 2020}
}

Works referenced in this record:

Redox flow batteries for energy storage: their promise, achievements and challenges
journal, August 2019


Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries
journal, November 2016

  • Sevov, Christo S.; Fisher, Sydney L.; Thompson, Levi T.
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b07638

Copper ionic liquids: Examining the role of the anion in determining physical and electrochemical properties
journal, February 2013

  • Pratt, Harry D.; Leonard, Jonathan C.; Steele, Leigh Anna M.
  • Inorganica Chimica Acta, Vol. 396
  • DOI: 10.1016/j.ica.2012.10.005

Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries
journal, January 2018

  • VanGelder, L. E.; Kosswattaarachchi, A. M.; Forrestel, P. L.
  • Chemical Science, Vol. 9, Issue 6
  • DOI: 10.1039/C7SC05295B

Fluoroborate equilibriums in aqueous solutions
journal, January 1973

  • Mesmer, R. E.; Palen, K. M.; Baes, C. F.
  • Inorganic Chemistry, Vol. 12, Issue 1
  • DOI: 10.1021/ic50119a023

Hydrolysis of Fluoboric Acid in Aqueous Solution
journal, March 1948

  • Wamser, Christian A.
  • Journal of the American Chemical Society, Vol. 70, Issue 3
  • DOI: 10.1021/ja01183a101

Highly Soluble Tris(2,2’-bipyridine) Metal Bis(trifluoromethanesulfonyl)imide Complexes for High Energy Organic Redox Flow Batteries
journal, January 2018

  • Mun, Junyoung; Oh, Duk-Jin; Park, Min Sik
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0791802jes

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries
journal, February 2019


A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries
journal, June 2015


Solution Redox Couples for Electrochemical Energy Storage
journal, January 1981

  • Chen, Yih-Wen D.; Santhanam, K. S. V.; Bard, Allen J.
  • Journal of The Electrochemical Society, Vol. 128, Issue 7, p. 1460-1467
  • DOI: 10.1149/1.2127663

Structural absorption by barbule microstructures of super black bird of paradise feathers
journal, January 2018


Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
journal, January 2015

  • Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.
  • Journal of Materials Chemistry A, Vol. 3, Issue 15
  • DOI: 10.1039/C4TA06622G

A high-performance all-iron non-aqueous redox flow battery
journal, January 2020


Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2ʹ-bipyridine) Complex Electrolyte
journal, January 2012

  • Mun, Junyoung; Lee, Myung-Jin; Park, Joung-Won
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 6
  • DOI: 10.1149/2.033206esl

Artificial G-Wire Switch with 2,2‘-Bipyridine Units Responsive to Divalent Metal Ions
journal, May 2007

  • Miyoshi, Daisuke; Karimata, Hisae; Wang, Zhong-Ming
  • Journal of the American Chemical Society, Vol. 129, Issue 18
  • DOI: 10.1021/ja068707u

Tuning the electrochemistry of homoleptic cobalt 4,4′-disubstituted-2,2′-bipyridine redox mediators
journal, October 2013


Nonaqueous redox-flow batteries: features, challenges, and prospects
journal, May 2015


BF 3 -promoted electrochemical properties of quinoxaline in propylene carbonate
journal, January 2015

  • Carino, Emily V.; Diesendruck, Charles E.; Moore, Jeffrey S.
  • RSC Advances, Vol. 5, Issue 24
  • DOI: 10.1039/C5RA00137D

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

Performance of a Non-Aqueous Vanadium Acetylacetonate Prototype Redox Flow Battery: Examination of Separators and Capacity Decay
journal, December 2014

  • Escalante-García, Ismailia L.; Wainright, Jesse S.; Thompson, Levi T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0471503jes

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Review of material research and development for vanadium redox flow battery applications
journal, July 2013


Highly Phosphorescent Cyclometalated Iridium(III) Complexes for Optoelectronic Applications: Fine Tuning of the Emission Wavelength through Ancillary Ligands
journal, March 2016

  • Skórka, Łukasz; Filapek, Michał; Zur, Lidia
  • The Journal of Physical Chemistry C, Vol. 120, Issue 13
  • DOI: 10.1021/acs.jpcc.6b01663

Metal coordination complexes in nonaqueous redox flow batteries
journal, December 2019


Through-Plane Conductivities of Membranes for Nonaqueous Redox Flow Batteries
journal, January 2015

  • Hudak, Nicholas S.; Small, Leo J.; Pratt, Harry D.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0901510jes

Spectroelectrochemistry of Vanadium Acetylacetonate and Chromium Acetylacetonate for Symmetric Nonaqueous Flow Batteries
journal, January 2016

  • Saraidaridis, James D.; Bartlett, Bart M.; Monroe, Charles W.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0441607jes

Cerium-containing complexes for low-cost, non-aqueous redox flow batteries (RFBs)
journal, February 2020


Dithiolene Complexes of First‐Row Transition Metals for Symmetric Nonaqueous Redox Flow Batteries
journal, September 2019

  • Hogue, Ross W.; Armstrong, Craig G.; Toghill, Kathryn E.
  • ChemSusChem, Vol. 12, Issue 19
  • DOI: 10.1002/cssc.201901702

The Isotopic Exchange of Fluoroboric acid with Hydrofluoric acid
journal, December 1960

  • Anbar, M.; Guttmann, S.
  • The Journal of Physical Chemistry, Vol. 64, Issue 12
  • DOI: 10.1021/j100841a021

On the Benefits of a Symmetric Redox Flow Battery
journal, December 2015

  • Potash, Rebecca A.; McKone, James R.; Conte, Sean
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0971602jes