DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction

Abstract

This contribution reports the discovery and analysis of a p-block Sn-based catalyst for the electroreduction of molecular oxygen in acidic conditions at fuel cell cathodes; the catalyst is free of platinum-group metals and contains single-metal-atom actives sites coordinated by nitrogen. The prepared SnNC catalysts meet and exceed state-of-the-art FeNC catalysts in terms of intrinsic catalytic turn-over frequency and hydrogen–air fuel cell power density. The SnNC-NH3 catalysts displayed a 40–50% higher current density than FeNC-NH3 at cell voltages below 0.7 V. Additional benefits include a highly favourable selectivity for the four-electron reduction pathway and a Fenton-inactive character of Sn. Here, a range of analytical techniques combined with density functional theory calculations indicate that stannic Sn(iv)Nx single-metal sites with moderate oxygen chemisorption properties and low pyridinic N coordination numbers act as catalytically active moieties. The superior proton-exchange membrane fuel cell performance of SnNC cathode catalysts under realistic, hydrogen–air fuel cell conditions, particularly after NH3 activation treatment, makes them a promising alternative to today’s state-of-the-art Fe-based catalysts.

Authors:
 [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [2];  [2]; ORCiD logo [2];  [6];  [7];  [1];  [1]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [2]; ORCiD logo [1]
  1. Technical Univ. of Berlin (Germany)
  2. Montpellier Univ. (France)
  3. Copenhagen Univ. (Denmark); Seabourg Technologies, Copenhagen (Denmark)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. Synchrotron SOLEIL, Gif-sur-Yvette (France)
  6. Max Planck Society, Berlin (Germany). Fritz Haber Institute; Max Planck Inst. for Chemical Energy Conversion, Berlin (Germany)
  7. Technical Univ. of Darmstadt (Germany)
  8. Copenhagen Univ. (Denmark)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; Federal Ministry of Education and Research (BMBF); Danish National Research Foundation; Graduate School of Excellence Energy Science and Engineering
OSTI Identifier:
1756269
Grant/Contract Number:  
AC05-00OR22725; 05K16RD1; DNRF 149; GRC1070
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 19; Journal Issue: 11; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Luo, Fang, Roy, Aaron, Silvioli, Luca, Cullen, David A., Zitolo, Andrea, Sougrati, Moulay Tahar, Oguz, Ismail Can, Mineva, Tzonka, Teschner, Detre, Wagner, Stephan, Wen, Ju, Dionigi, Fabio, Kramm, Ulrike I., Rossmeisl, Jan, Jaouen, Frédéric, and Strasser, Peter. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. United States: N. p., 2020. Web. doi:10.1038/s41563-020-0717-5.
Luo, Fang, Roy, Aaron, Silvioli, Luca, Cullen, David A., Zitolo, Andrea, Sougrati, Moulay Tahar, Oguz, Ismail Can, Mineva, Tzonka, Teschner, Detre, Wagner, Stephan, Wen, Ju, Dionigi, Fabio, Kramm, Ulrike I., Rossmeisl, Jan, Jaouen, Frédéric, & Strasser, Peter. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. United States. https://doi.org/10.1038/s41563-020-0717-5
Luo, Fang, Roy, Aaron, Silvioli, Luca, Cullen, David A., Zitolo, Andrea, Sougrati, Moulay Tahar, Oguz, Ismail Can, Mineva, Tzonka, Teschner, Detre, Wagner, Stephan, Wen, Ju, Dionigi, Fabio, Kramm, Ulrike I., Rossmeisl, Jan, Jaouen, Frédéric, and Strasser, Peter. Mon . "P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction". United States. https://doi.org/10.1038/s41563-020-0717-5. https://www.osti.gov/servlets/purl/1756269.
@article{osti_1756269,
title = {P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction},
author = {Luo, Fang and Roy, Aaron and Silvioli, Luca and Cullen, David A. and Zitolo, Andrea and Sougrati, Moulay Tahar and Oguz, Ismail Can and Mineva, Tzonka and Teschner, Detre and Wagner, Stephan and Wen, Ju and Dionigi, Fabio and Kramm, Ulrike I. and Rossmeisl, Jan and Jaouen, Frédéric and Strasser, Peter},
abstractNote = {This contribution reports the discovery and analysis of a p-block Sn-based catalyst for the electroreduction of molecular oxygen in acidic conditions at fuel cell cathodes; the catalyst is free of platinum-group metals and contains single-metal-atom actives sites coordinated by nitrogen. The prepared SnNC catalysts meet and exceed state-of-the-art FeNC catalysts in terms of intrinsic catalytic turn-over frequency and hydrogen–air fuel cell power density. The SnNC-NH3 catalysts displayed a 40–50% higher current density than FeNC-NH3 at cell voltages below 0.7 V. Additional benefits include a highly favourable selectivity for the four-electron reduction pathway and a Fenton-inactive character of Sn. Here, a range of analytical techniques combined with density functional theory calculations indicate that stannic Sn(iv)Nx single-metal sites with moderate oxygen chemisorption properties and low pyridinic N coordination numbers act as catalytically active moieties. The superior proton-exchange membrane fuel cell performance of SnNC cathode catalysts under realistic, hydrogen–air fuel cell conditions, particularly after NH3 activation treatment, makes them a promising alternative to today’s state-of-the-art Fe-based catalysts.},
doi = {10.1038/s41563-020-0717-5},
journal = {Nature Materials},
number = 11,
volume = 19,
place = {United States},
year = {Mon Jul 13 00:00:00 EDT 2020},
month = {Mon Jul 13 00:00:00 EDT 2020}
}

Works referenced in this record:

Membrane and Catalyst Performance Targets for Automotive Fuel Cells by FCCJ Membrane, Catalyst, MEA WG
conference, January 2011

  • Ohma, Atsushi; Shinohara, Kazuhiko; Iiyama, Akihiro
  • 220th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3635611

The Role of Platinum in Proton Exchange Membrane Fuel Cells
journal, October 2013


A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells
journal, December 2009


Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells
journal, April 2009

  • Lefèvre, Michel; Proietti, Eric; Jaouen, Frédéric
  • Science, Vol. 324, Issue 5923, p. 71-74
  • DOI: 10.1126/science.1170051

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt
journal, April 2011


A class of non-precious metal composite catalysts for fuel cells
journal, September 2006


Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe 3 C Nanoparticles Boost the Activity of Fe–N x
journal, March 2016

  • Jiang, Wen-Jie; Gu, Lin; Li, Li
  • Journal of the American Chemical Society, Vol. 138, Issue 10
  • DOI: 10.1021/jacs.6b00757

Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts
journal, October 2015

  • Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9618

A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction
journal, June 2008


Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials
journal, August 2015

  • Zitolo, Andrea; Goellner, Vincent; Armel, Vanessa
  • Nature Materials, Vol. 14, Issue 9
  • DOI: 10.1038/nmat4367

Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
journal, August 2017


Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction
journal, October 2017

  • Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01100-7

A New Fuel Cell Cathode Catalyst
journal, March 1964

  • Jasinski, Raymond
  • Nature, Vol. 201, Issue 4925, p. 1212-1213
  • DOI: 10.1038/2011212a0

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis
journal, September 2011


Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces
journal, July 2012

  • Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs300227s

Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear‐ and Electron‐Resonance Techniques
journal, July 2019

  • Wagner, Stephan; Auerbach, Hendrik; Tait, Claudia E.
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201903753

Molecular structure, optical and magnetic properties of the { Sn IV Pc (3-) Cl 2 } •- radical anions containing negatively charged Pc ligands
journal, December 2014

  • Konarev, Dmitri V.; Troyanov, Sergey I.; Faraonov, Maxim A.
  • Journal of Porphyrins and Phthalocyanines, Vol. 18, Issue 12
  • DOI: 10.1142/S1088424614501077

Activity–Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal–Nitrogen–Carbon Catalysts
journal, July 2019

  • Sun, Yanyan; Silvioli, Luca; Sahraie, Nastaran Ranjbar
  • Journal of the American Chemical Society, Vol. 141, Issue 31
  • DOI: 10.1021/jacs.9b05576

Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs
journal, May 2007


Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction
journal, September 2016

  • Zagal, José H.; Koper, Marc T. M.
  • Angewandte Chemie International Edition, Vol. 55, Issue 47
  • DOI: 10.1002/anie.201604311

Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry
journal, October 2013

  • Ramaswamy, Nagappan; Tylus, Urszula; Jia, Qingying
  • Journal of the American Chemical Society, Vol. 135, Issue 41
  • DOI: 10.1021/ja405149m

Metallophthalocyanines as catalysts in electrochemical reactions
journal, October 1992


Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems
journal, April 2014

  • Tylus, Urszula; Jia, Qingying; Strickland, Kara
  • The Journal of Physical Chemistry C, Vol. 118, Issue 17
  • DOI: 10.1021/jp500781v

Toward the Decentralized Electrochemical Production of H 2 O 2 : A Focus on the Catalysis
journal, March 2018

  • Yang, Sungeun; Verdaguer-Casadevall, Arnau; Arnarson, Logi
  • ACS Catalysis, Vol. 8, Issue 5
  • DOI: 10.1021/acscatal.8b00217

Steady state oxygenreduction and cyclic voltammetry
journal, January 2009

  • Rossmeisl, Jan; Karlberg, Gustav S.; Jaramillo, Thomas
  • Faraday Discuss., Vol. 140
  • DOI: 10.1039/B802129E

Assessing the reliability of calculated catalytic ammonia synthesis rates
journal, July 2014


Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation
journal, June 2012


Correlations between Mass Activity and Physicochemical Properties of Fe/N/C Catalysts for the ORR in PEM Fuel Cell via 57 Fe Mössbauer Spectroscopy and Other Techniques
journal, January 2014

  • Kramm, Ulrike I.; Lefèvre, Michel; Larouche, Nicholas
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja410076f

57 Fe Mössbauer Spectroscopy Characterization of Electrocatalysts
journal, December 2018

  • Kramm, Ulrike I.; Ni, Lingmei; Wagner, Stephan
  • Advanced Materials, Vol. 31, Issue 31
  • DOI: 10.1002/adma.201805623

Analyzing Structural Changes of Fe–N–C Cathode Catalysts in PEM Fuel Cell by Mößbauer Spectroscopy of Complete Membrane Electrode Assemblies
journal, October 2014

  • Kramm, Ulrike I.; Lefèvre, Michel; Bogdanoff, Peter
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21
  • DOI: 10.1021/jz501955g

Physikalische Methoden in der Chemie: Mößbauer-Spektroskopie I
journal, October 1970


Local Structural Disorder and Relaxation in SnO 2 Nanostructures Studied by 119 Sn MAS NMR and 119 Sn Mössbauer Spectroscopy
journal, March 2011

  • Indris, Sylvio; Scheuermann, Marco; Becker, Sebastian M.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp200651m

Moessbauer spectra of tin complexes of phthalocyanine and tetraarylporphines
journal, March 1970

  • O'Rourke, Mary.; Curran, Brother Columba.
  • Journal of the American Chemical Society, Vol. 92, Issue 6
  • DOI: 10.1021/ja00709a010

Surface Oxidation of Tin Chalcogenide Nanocrystals Revealed by 119 Sn–Mössbauer Spectroscopy
journal, July 2012

  • de Kergommeaux, Antoine; Faure-Vincent, Jérôme; Pron, Adam
  • Journal of the American Chemical Society, Vol. 134, Issue 28
  • DOI: 10.1021/ja3033313

Interpretation of the 119 Sn Mössbauer isomer shifts in complex tin chalcogenides
journal, August 1999


Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN 4 Sites for Oxygen Reduction
journal, November 2019

  • Li, Jiazhan; Zhang, Hanguang; Samarakoon, Widitha
  • Angewandte Chemie International Edition, Vol. 58, Issue 52
  • DOI: 10.1002/anie.201909312

Evolution Pathway from Iron Compounds to Fe 1 (II)–N 4 Sites through Gas-Phase Iron during Pyrolysis
journal, December 2019

  • Li, Jingkun; Jiao, Li; Wegener, Evan
  • Journal of the American Chemical Society, Vol. 142, Issue 3
  • DOI: 10.1021/jacs.9b11197

Why gold is the noblest of all the metals
journal, July 1995


Density functional theory in surface chemistry and catalysis
journal, January 2011

  • Norskov, J. K.; Abild-Pedersen, F.; Studt, F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 3
  • DOI: 10.1073/pnas.1006652108

Heat-Treated Fe/N/C Catalysts for O2 Electroreduction:  Are Active Sites Hosted in Micropores?
journal, March 2006

  • Jaouen, Frédéric; Lefèvre, Michel; Dodelet, Jean-Pol
  • The Journal of Physical Chemistry B, Vol. 110, Issue 11, p. 5553-5558
  • DOI: 10.1021/jp057135h

The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

Real-space grid implementation of the projector augmented wave method
journal, January 2005


An object-oriented scripting interface to a legacy electronic structure code
journal, January 2002

  • Bahn, S. R.; Jacobsen, K. W.
  • Computing in Science & Engineering, Vol. 4, Issue 3
  • DOI: 10.1109/5992.998641

Electrolysis of water on oxide surfaces
journal, September 2007


Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions
journal, January 2011

  • Calle-Vallejo, Federico; Martínez, José Ignacio; Rossmeisl, Jan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 34
  • DOI: 10.1039/c1cp21228a

How covalence breaks adsorption-energy scaling relations and solvation restores them
journal, January 2017

  • Calle-Vallejo, Federico; Krabbe, Alexander; García-Lastra, Juan M.
  • Chemical Science, Vol. 8, Issue 1
  • DOI: 10.1039/C6SC02123A