From Trivial Kondo Insulator Ce_{3}Pt_{3}Bi_{4} to Topological NodalLine Semimetal Ce_{3}Pd_{3}Bi_{4}
Abstract
In this work, using the density functional theory combined with dynamical meanfield theory, we have performed systematic study of the electronic structure and its band topology properties of ${\mathrm{Ce}}_{3}{\mathrm{Pt}}_{3}{\mathrm{Bi}}_{4}$ and ${\mathrm{Ce}}_{3}{\mathrm{Pd}}_{3}{\mathrm{Bi}}_{4}$. At high temperatures ( $~290\text{}\text{}\mathrm{K}$), the electronic structures of both compounds resemble the opencore $4f$ density functional calculation results. For ${\mathrm{Ce}}_{3}{\mathrm{Pt}}_{3}{\mathrm{Bi}}_{4}$, clear hybridization gap can be observed below 72 K, and its coherent momentumresolved spectral function below 18 K exhibits an topologically trivial indirect gap of $~6\text{}\text{}\mathrm{meV}$ and resembles density functional band structure with itinerant $4f$ state. For ${\mathrm{Ce}}_{3}{\mathrm{Pd}}_{3}{\mathrm{Bi}}_{4}$, no clear hybridization gap can be observed down to 4 K, and its momentumresolved spectral function resembles electrondoped opencore $4f$ density functional calculations. The band nodal points of ${\mathrm{Ce}}_{3}{\mathrm{Pd}}_{3}{\mathrm{Bi}}_{4}$ at 4 K are protected by the glidingmirror symmetry and form ringlike structure. Therefore, the ${\mathrm{Ce}}_{3}{\mathrm{Pt}}_{3}{\mathrm{Bi}}_{4}$ compound is topologically trivial Kondo insulator while the ${\mathrm{Ce}}_{3}{\mathrm{Pd}}_{3}{\mathrm{Bi}}_{4}$ compound is topological nodalline semimetal.
 Authors:

 Hangzhou Normal Univ. (China)
 Zhejiang Univ., Hangzhou (China)
 Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)
 Publication Date:
 Research Org.:
 Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
 Sponsoring Org.:
 USDOE Office of Science (SC). Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); 973 Project; USDOE
 OSTI Identifier:
 1739964
 Alternate Identifier(s):
 OSTI ID: 1615705
 Report Number(s):
 LAUR1922826
Journal ID: ISSN 00319007; TRN: US2205507
 Grant/Contract Number:
 89233218CNA000001; 11874137; 2014CB648400; LANLE3B5
 Resource Type:
 Accepted Manuscript
 Journal Name:
 Physical Review Letters
 Additional Journal Information:
 Journal Volume: 124; Journal Issue: 16; Journal ID: ISSN 00319007
 Publisher:
 American Physical Society (APS)
 Country of Publication:
 United States
 Language:
 English
 Subject:
 36 MATERIALS SCIENCE; Electronic structure; Kondo effect; spinorbit coupling; topological phases of matter
Citation Formats
Cao, Chao, Zhi, GuoXiang, and Zhu, JianXin. From Trivial Kondo Insulator Ce3Pt3Bi4 to Topological NodalLine Semimetal Ce3Pd3Bi4. United States: N. p., 2020.
Web. doi:10.1103/physrevlett.124.166403.
Cao, Chao, Zhi, GuoXiang, & Zhu, JianXin. From Trivial Kondo Insulator Ce3Pt3Bi4 to Topological NodalLine Semimetal Ce3Pd3Bi4. United States. https://doi.org/10.1103/physrevlett.124.166403
Cao, Chao, Zhi, GuoXiang, and Zhu, JianXin. Wed .
"From Trivial Kondo Insulator Ce3Pt3Bi4 to Topological NodalLine Semimetal Ce3Pd3Bi4". United States. https://doi.org/10.1103/physrevlett.124.166403. https://www.osti.gov/servlets/purl/1739964.
@article{osti_1739964,
title = {From Trivial Kondo Insulator Ce3Pt3Bi4 to Topological NodalLine Semimetal Ce3Pd3Bi4},
author = {Cao, Chao and Zhi, GuoXiang and Zhu, JianXin},
abstractNote = {In this work, using the density functional theory combined with dynamical meanfield theory, we have performed systematic study of the electronic structure and its band topology properties of Ce3Pt3Bi4 and Ce3Pd3Bi4. At high temperatures (~290 K), the electronic structures of both compounds resemble the opencore 4f density functional calculation results. For Ce3Pt3Bi4, clear hybridization gap can be observed below 72 K, and its coherent momentumresolved spectral function below 18 K exhibits an topologically trivial indirect gap of ~6 meV and resembles density functional band structure with itinerant 4f state. For Ce3Pd3Bi4, no clear hybridization gap can be observed down to 4 K, and its momentumresolved spectral function resembles electrondoped opencore 4f density functional calculations. The band nodal points of Ce3Pd3Bi4 at 4 K are protected by the glidingmirror symmetry and form ringlike structure. Therefore, the Ce3Pt3Bi4 compound is topologically trivial Kondo insulator while the Ce3Pd3Bi4 compound is topological nodalline semimetal.},
doi = {10.1103/physrevlett.124.166403},
journal = {Physical Review Letters},
number = 16,
volume = 124,
place = {United States},
year = {2020},
month = {4}
}
Web of Science
Works referenced in this record:
Topological insulators and superconductors
journal, October 2011
 Qi, XiaoLiang; Zhang, ShouCheng
 Reviews of Modern Physics, Vol. 83, Issue 4
Thermal expansion of ${\mathrm{Ce}}_{3}$ ${\mathrm{Bi}}_{4}$ ${\mathrm{Pt}}_{3}$ at ambient and high pressures
journal, October 1992
 Kwei, G. H.; Lawrence, J. M.; Canfield, P. C.
 Physical Review B, Vol. 46, Issue 13
Equivalent expression of ${\mathbb{Z}}_{2}$ topological invariant for band insulators using the nonAbelian Berry connection
journal, August 2011
 Yu, Rui; Qi, Xiao Liang; Bernevig, Andrei
 Physical Review B, Vol. 84, Issue 7
Lowtemperature conducting state in two candidate topological Kondo insulators: ${\mathrm{SmB}}_{6}$ and ${\mathrm{Ce}}_{3}{\mathrm{Bi}}_{4}{\mathrm{Pt}}_{3}$
journal, July 2016
 Wakeham, N.; Rosa, P. F. S.; Wang, Y. Q.
 Physical Review B, Vol. 94, Issue 3
Weyl–Kondo semimetal in heavyfermion systems
journal, December 2017
 Lai, HsinHua; Grefe, Sarah E.; Paschen, Silke
 Proceedings of the National Academy of Sciences, Vol. 115, Issue 1
Topological surface state in the Kondo insulator samarium hexaboride
journal, March 2014
 Kim, D. J.; Xia, J.; Fisk, Z.
 Nature Materials, Vol. 13, Issue 5
Thermoelectricity in correlated narrowgap semiconductors
journal, April 2018
 Tomczak, Jan M.
 Journal of Physics: Condensed Matter, Vol. 30, Issue 18
Quantum Monte Carlo impurity solver for cluster dynamical meanfield theory and electronic structure calculations with adjustable cluster base
journal, April 2007
 Haule, Kristjan
 Physical Review B, Vol. 75, Issue 15
Possible Weyl fermions in the magnetic Kondo system CeSb
journal, July 2017
 Guo, Chunyu; Cao, Chao; Smidman, Michael
 npj Quantum Materials, Vol. 2, Issue 1
Parityviolating hybridization in heavy Weyl semimetals
journal, April 2018
 Chang, PoYao; Coleman, Piers
 Physical Review B, Vol. 97, Issue 15
Colloquium: Topological insulators
journal, November 2010
 Hasan, M. Z.; Kane, C. L.
 Reviews of Modern Physics, Vol. 82, Issue 4, p. 30453067
From ultrasoft pseudopotentials to the projector augmentedwave method
journal, January 1999
 Kresse, G.; Joubert, D.
 Physical Review B, Vol. 59, Issue 3, p. 17581775
Kondo coupling induced charge gap in ${\mathrm{Ce}}_{3}$ ${\mathrm{Bi}}_{4}$ ${\mathrm{Pt}}_{3}$
journal, January 1994
 Bucher, B.; Schlesinger, Z.; Canfield, P. C.
 Physical Review Letters, Vol. 72, Issue 4
Continuoustime Monte Carlo methods for quantum impurity models
journal, May 2011
 Gull, Emanuel; Millis, Andrew J.; Lichtenstein, Alexander I.
 Reviews of Modern Physics, Vol. 83, Issue 2
Structure and properties of Ce3Pd3Bi4, CePdBi, and CePd2Zn3
journal, May 2008
 Hermes, Wilfried; Linsinger, Stefan; Mishra, Ratikanta
 Monatshefte für Chemie  Chemical Monthly, Vol. 139, Issue 10
Topological Invariants and GroundState Wave functions of Topological Insulators on a Torus
journal, January 2014
 Wang, Zhong; Zhang, ShouCheng
 Physical Review X, Vol. 4, Issue 1
Möbius Kondo insulators
journal, April 2017
 Chang, PoYao; Erten, Onur; Coleman, Piers
 Nature Physics, Vol. 13, Issue 8
Evidence for Weyl fermions in a canonical heavyfermion semimetal YbPtBi
journal, November 2018
 Guo, C. Y.; Wu, F.; Wu, Z. Z.
 Nature Communications, Vol. 9, Issue 1
Dynamical meanfield theory of strongly correlated fermion systems and the limit of infinite dimensions
journal, January 1996
 Georges, Antoine; Kotliar, Gabriel; Krauth, Werner
 Reviews of Modern Physics, Vol. 68, Issue 1
Magnetic fieldtuned Fermi liquid in a Kondo insulator
journal, December 2019
 Kushwaha, Satya K.; Chan, Mun K.; Park, Joonbum
 Nature Communications, Vol. 10, Issue 1
Kondo Insulator to Semimetal Transformation Tuned by SpinOrbit Coupling
journal, June 2017
 Dzsaber, S.; Prochaska, L.; Sidorenko, A.
 Physical Review Letters, Vol. 118, Issue 24
Electronic structure calculations with dynamical meanfield theory
journal, August 2006
 Kotliar, G.; Savrasov, S. Y.; Haule, K.
 Reviews of Modern Physics, Vol. 78, Issue 3
Hybridization gap in ${\mathrm{Ce}}_{3}$ ${\mathrm{Bi}}_{4}$ ${\mathrm{Pt}}_{3}$
journal, October 1990
 Hundley, M. F.; Canfield, P. C.; Thompson, J. D.
 Physical Review B, Vol. 42, Issue 10
Ab initiomolecular dynamics for liquid metals
journal, January 1993
 Kresse, G.; Hafner, J.
 Physical Review B, Vol. 47, Issue 1, p. 558561
Dynamical meanfield theory within the fullpotential methods: Electronic structure of ${\text{CeIrIn}}_{5}$ , ${\text{CeCoIn}}_{5}$ , and ${\text{CeRhIn}}_{5}$
journal, May 2010
 Haule, Kristjan; Yee, ChuckHou; Kim, Kyoo
 Physical Review B, Vol. 81, Issue 19
Gap in the magnetic excitation spectrum of Ce 3 Bi 4 Pt 3
journal, October 1991
 Severing, A.; Thompson, J. D.; Canfield, P. C.
 Physical Review B, Vol. 44, Issue 13
High pressures and the Kondo gap in ${\mathrm{Ce}}_{3}$ ${\mathrm{Bi}}_{4}$ ${\mathrm{Pt}}_{3}$ s
journal, March 1997
 Cooley, J. C.; Aronson, M. C.; Canfield, P. C.
 Physical Review B, Vol. 55, Issue 12
Topological Hamiltonian as an exact tool for topological invariants
journal, March 2013
 Wang, Zhong; Yan, Binghai
 Journal of Physics: Condensed Matter, Vol. 25, Issue 15
Topological invariants for interacting topological insulators with inversion symmetry
journal, April 2012
 Wang, Zhong; Qi, XiaoLiang; Zhang, ShouCheng
 Physical Review B, Vol. 85, Issue 16
Advanced capabilities for materials modelling with Quantum ESPRESSO
journal, October 2017
 Giannozzi, P.; Andreussi, O.; Brumme, T.
 Journal of Physics: Condensed Matter, Vol. 29, Issue 46
Maximally localized Wannier functions for entangled energy bands
journal, December 2001
 Souza, Ivo; Marzari, Nicola; Vanderbilt, David
 Physical Review B, Vol. 65, Issue 3
Electronic structure calculations of solids using the WIEN2k package for material sciences
journal, August 2002
 Schwarz, K.; Blaha, P.; Madsen, G. K. H.
 Computer Physics Communications, Vol. 147, Issue 12
Simplified Topological Invariants for Interacting Insulators
journal, August 2012
 Wang, Zhong; Zhang, ShouCheng
 Physical Review X, Vol. 2, Issue 3