DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma

Abstract

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0 g cm–3, the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields playmore » in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [2]; ORCiD logo [10];  [10];  [2];  [11];  [11];  [1] more »;  [1]; ORCiD logo [1] « less
  1. Center for Energy Research, University of California San Diego, La Jolla, CA 92093-0417, USA
  2. Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
  3. E.T.S.I. Industriales, Universidad Politecnica de Madrid, Madrid 28040, Spain
  4. Office National d’Etudes et de Recherches Aérospatiales (ONERA), Palaiseau 91123, France
  5. Sandia National Laboratories, Albuquerque, NM 87185, USA
  6. Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA, Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
  7. Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA, General Atomics, San Diego, CA 92186, USA
  8. General Atomics, San Diego, CA 92186, USA
  9. Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA, Extreme State Physics Laboratory, University of Rochester, Rochester, NY 14627, USA
  10. Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
  11. Université de Bordeaux-CNRS-CEA, CELIA UMR, 5107 33400 Talence, France
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); National Science Foundation (NSF)
OSTI Identifier:
1734406
Alternate Identifier(s):
OSTI ID: 1784756; OSTI ID: 1810355
Report Number(s):
SAND-2021-7750J
Journal ID: ISSN 1364-503X
Grant/Contract Number:  
536203; NA0003842; NA0003943; NA-0003525; ACI-1548562; PHY180053; B632670; AC04-94AL85000
Resource Type:
Published Article
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Name: Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences Journal Volume: 379 Journal Issue: 2189; Journal ID: ISSN 1364-503X
Publisher:
The Royal Society
Country of Publication:
United Kingdom
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ICF; fast electrons; compression

Citation Formats

Kawahito, D., Bailly-Grandvaux, M., Dozières, M., McGuffey, C., Forestier-Colleoni, P., Peebles, J., Honrubia, J. J., Khiar, B., Hansen, S., Tzeferacos, P., Wei, M. S., Krauland, C. M., Gourdain, P., Davies, J. R., Matsuo, K., Fujioka, S., Campbell, E. M., Santos, J. J., Batani, D., Bhutwala, K., Zhang, S., and Beg, F. N. Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma. United Kingdom: N. p., 2020. Web. doi:10.1098/rsta.2020.0052.
Kawahito, D., Bailly-Grandvaux, M., Dozières, M., McGuffey, C., Forestier-Colleoni, P., Peebles, J., Honrubia, J. J., Khiar, B., Hansen, S., Tzeferacos, P., Wei, M. S., Krauland, C. M., Gourdain, P., Davies, J. R., Matsuo, K., Fujioka, S., Campbell, E. M., Santos, J. J., Batani, D., Bhutwala, K., Zhang, S., & Beg, F. N. Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma. United Kingdom. https://doi.org/10.1098/rsta.2020.0052
Kawahito, D., Bailly-Grandvaux, M., Dozières, M., McGuffey, C., Forestier-Colleoni, P., Peebles, J., Honrubia, J. J., Khiar, B., Hansen, S., Tzeferacos, P., Wei, M. S., Krauland, C. M., Gourdain, P., Davies, J. R., Matsuo, K., Fujioka, S., Campbell, E. M., Santos, J. J., Batani, D., Bhutwala, K., Zhang, S., and Beg, F. N. Mon . "Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma". United Kingdom. https://doi.org/10.1098/rsta.2020.0052.
@article{osti_1734406,
title = {Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma},
author = {Kawahito, D. and Bailly-Grandvaux, M. and Dozières, M. and McGuffey, C. and Forestier-Colleoni, P. and Peebles, J. and Honrubia, J. J. and Khiar, B. and Hansen, S. and Tzeferacos, P. and Wei, M. S. and Krauland, C. M. and Gourdain, P. and Davies, J. R. and Matsuo, K. and Fujioka, S. and Campbell, E. M. and Santos, J. J. and Batani, D. and Bhutwala, K. and Zhang, S. and Beg, F. N.},
abstractNote = {Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0 g cm–3, the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating.},
doi = {10.1098/rsta.2020.0052},
journal = {Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences},
number = 2189,
volume = 379,
place = {United Kingdom},
year = {Mon Dec 07 00:00:00 EST 2020},
month = {Mon Dec 07 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1098/rsta.2020.0052

Save / Share:

Works referenced in this record:

Transport and spatial energy deposition of relativistic electrons in copper-doped fast ignition plasmas
journal, October 2017

  • Jarrott, L. C.; McGuffey, C.; Beg, F. N.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4999108

FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Hot-Electron Temperature and Laser-Light Absorption in Fast Ignition
journal, January 2009


Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Ignition and high gain with ultrapowerful lasers
journal, May 1994

  • Tabak, Max; Hammer, James; Glinsky, Michael E.
  • Physics of Plasmas, Vol. 1, Issue 5, p. 1626-1634
  • DOI: 10.1063/1.870664

X rays from z ‐pinches on relativistic electron‐beam generators
journal, August 1988

  • Pereira, N. R.; Davis, J.
  • Journal of Applied Physics, Vol. 64, Issue 3
  • DOI: 10.1063/1.341808

Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets
journal, January 2016

  • Jarrott, L. C.; Wei, M. S.; McGuffey, C.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3614

Reduction of the fast electron angular dispersion by means of varying-resistivity structured targets
journal, January 2013

  • Debayle, A.; Gremillet, L.; Honrubia, J. J.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4789451

A ten-inch manipulator (TIM) based fast-electron spectrometer with multiple viewing angles (OU-ESM)
journal, June 2019

  • Habara, H.; Iwawaki, T.; Gong, T.
  • Review of Scientific Instruments, Vol. 90, Issue 6
  • DOI: 10.1063/1.5088529

Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas
journal, April 2011

  • Vauzour, B.; Pérez, F.; Volpe, L.
  • Physics of Plasmas, Vol. 18, Issue 4
  • DOI: 10.1063/1.3578346

Ion acceleration by superintense laser-plasma interaction
journal, May 2013

  • Macchi, Andrea; Borghesi, Marco; Passoni, Matteo
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.751

Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter
journal, July 2000


Binary-encounter-dipole model for electron-impact ionization
journal, November 1994


Filamented transport of laser-generated relativistic electrons penetrating a solid target
journal, March 2002

  • Gremillet, Laurent; Bonnaud, Guy; Amiranoff, François
  • Physics of Plasmas, Vol. 9, Issue 3
  • DOI: 10.1063/1.1432994

Fast heating scalable to laser fusion ignition
journal, August 2002

  • Kodama, R.; Shiraga, H.; Shigemori, K.
  • Nature, Vol. 418, Issue 6901
  • DOI: 10.1038/418933a

High-gain, low-intensity ICF targets for a charged-particle beam fusion driver
journal, January 1981


Divergence of laser-driven relativistic electron beams
journal, September 2010


FLASH MHD simulations of experiments that study shock-generated magnetic fields
journal, December 2015


Enhanced Isochoric Heating from Fast Electrons Produced by High-Contrast, Relativistic-Intensity Laser Pulses
journal, February 2010


Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields
journal, July 2012

  • Strozzi, D. J.; Tabak, M.; Larson, D. J.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4739294

Fast ignitor target studies for the HiPER project
journal, May 2008

  • Atzeni, S.; Schiavi, A.; Honrubia, J. J.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2895447

Radiation reaction as an energy enhancement mechanism for laser-irradiated electrons in a strong plasma magnetic field
journal, November 2019


Control of an electron beam using strong magnetic field for efficient core heating in fast ignition
journal, April 2015


Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Project
journal, September 2009


Heating model for metals irradiated by a subpicosecond laser pulse
journal, May 2007


Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states
journal, September 2018


Approach to the study of fast electron transport in cylindrically imploded targets
journal, July 2015


Computational study of magnetic field compression by laser-driven implosion
journal, August 2015


Generation of Superponderomotive Electrons in Multipicosecond Interactions of Kilojoule Laser Beams with Solid-Density Plasmas
journal, April 2016


Absorption of ultra-intense laser pulses
journal, August 1992


Theory of fast electron transport for fast ignition
journal, April 2014


Ionization and acceleration of multiply charged gold ions in solid film irradiated by high intensity laser
journal, March 2020

  • Kawahito, D.; Kishimoto, Y.
  • Physics of Plasmas, Vol. 27, Issue 3
  • DOI: 10.1063/1.5140493

Fast ignition integrated experiments and high-gain point design
journal, April 2014


Fast electron energy transport in solid density and compressed plasma
journal, April 2014


Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
journal, January 2018


Multi-phase ionization dynamics of carbon thin film irradiated by high power short pulse laser
journal, October 2017

  • Kawahito, Daiki; Kishimoto, Yasuaki
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4986034

Integrated simulation of magnetic-field-assist fast ignition laser fusion
journal, November 2016


Initial cone-in-shell fast-ignition experiments on OMEGA
journal, May 2011

  • Theobald, W.; Solodov, A. A.; Stoeckl, C.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3566082

Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold-solid and in warm-dense plasmas
journal, March 2014

  • Vauzour, B.; Debayle, A.; Vaisseau, X.
  • Physics of Plasmas, Vol. 21, Issue 3
  • DOI: 10.1063/1.4867187

Laser-driven magnetized liner inertial fusion
journal, June 2017

  • Davies, J. R.; Barnak, D. H.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4984779

Magnetically Guided Fast Electrons in Cylindrically Compressed Matter
journal, August 2011


Laser-driven fast-electron transport in preheated foil targets
journal, May 2005

  • Honrubia, J. J.; Kaluza, M.; Schreiber, J.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1894397

Characterization of an imploding cylindrical plasma for electron transport studies using x-ray emission spectroscopy
journal, February 2020

  • Dozières, M.; Hansen, S.; Forestier-Colleoni, P.
  • Physics of Plasmas, Vol. 27, Issue 2
  • DOI: 10.1063/1.5125271

Electron acceleration in dense plasmas heated by a picosecond relativistic laser
journal, July 2019