DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accelerating Ab Initio Simulation via Nested Monte Carlo and Machine Learned Reference Potentials

Abstract

As a corollary of the rapid advances in computing, ab initio simulation is playing an increasingly important role in modeling materials at the atomic scale. Two strategies are possible, ab initio Monte Carlo (AIMC) and molecular dynamics (AIMD) simulation. The former benefits from exact sampling from the correct thermodynamic distribution, while the latter is typically more efficient with its collective all-atom coordinate updates. In this study, using a relatively simple test model comprised of helium and argon, we show that AIMC can be brought up to, and even above, the performance levels of AIMD via a hybrid nested sampling/machine learning (ML) strategy. Here, ML provides an accurate classical reference potential (up to three-body explicit interactions) that can pilot long collective Monte Carlo moves that are accepted or rejected in toto à la nested Monte Carlo (NMC); this is in contrast to the single move nature of a naive implementation. Our proposed method only requires a small up front expense from evaluating the ab initio energies and forces of (100) random configurations for training. Importantly, our method does not totally rely on the trained, assuredly imperfect, interaction. We show that high performance and exact sampling at the desired level of theorymore » can be realized even when the trained interaction has appreciable differences from the ab initio potential. Remarkably, at the highest levels of performance realized via our approach, a pair of statistically uncorrelated atomic configurations can be generated with (1) ab initio calculations.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Advanced Scientific Computing Research (ASCR); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1699465
Report Number(s):
LA-UR-20-21151
Journal ID: ISSN 1520-6106; TRN: US2204532
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 124; Journal Issue: 26; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; machine learning; simulation; Monte Carlo; molecular dynamics; ab initio; density functional theory

Citation Formats

Jadrich, Ryan Bradley, and Leiding, Jeffery Allen. Accelerating Ab Initio Simulation via Nested Monte Carlo and Machine Learned Reference Potentials. United States: N. p., 2020. Web. doi:10.1021/acs.jpcb.0c03738.
Jadrich, Ryan Bradley, & Leiding, Jeffery Allen. Accelerating Ab Initio Simulation via Nested Monte Carlo and Machine Learned Reference Potentials. United States. https://doi.org/10.1021/acs.jpcb.0c03738
Jadrich, Ryan Bradley, and Leiding, Jeffery Allen. Tue . "Accelerating Ab Initio Simulation via Nested Monte Carlo and Machine Learned Reference Potentials". United States. https://doi.org/10.1021/acs.jpcb.0c03738. https://www.osti.gov/servlets/purl/1699465.
@article{osti_1699465,
title = {Accelerating Ab Initio Simulation via Nested Monte Carlo and Machine Learned Reference Potentials},
author = {Jadrich, Ryan Bradley and Leiding, Jeffery Allen},
abstractNote = {As a corollary of the rapid advances in computing, ab initio simulation is playing an increasingly important role in modeling materials at the atomic scale. Two strategies are possible, ab initio Monte Carlo (AIMC) and molecular dynamics (AIMD) simulation. The former benefits from exact sampling from the correct thermodynamic distribution, while the latter is typically more efficient with its collective all-atom coordinate updates. In this study, using a relatively simple test model comprised of helium and argon, we show that AIMC can be brought up to, and even above, the performance levels of AIMD via a hybrid nested sampling/machine learning (ML) strategy. Here, ML provides an accurate classical reference potential (up to three-body explicit interactions) that can pilot long collective Monte Carlo moves that are accepted or rejected in toto à la nested Monte Carlo (NMC); this is in contrast to the single move nature of a naive implementation. Our proposed method only requires a small up front expense from evaluating the ab initio energies and forces of (100) random configurations for training. Importantly, our method does not totally rely on the trained, assuredly imperfect, interaction. We show that high performance and exact sampling at the desired level of theory can be realized even when the trained interaction has appreciable differences from the ab initio potential. Remarkably, at the highest levels of performance realized via our approach, a pair of statistically uncorrelated atomic configurations can be generated with (1) ab initio calculations.},
doi = {10.1021/acs.jpcb.0c03738},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 26,
volume = 124,
place = {United States},
year = {Tue Jun 02 00:00:00 EDT 2020},
month = {Tue Jun 02 00:00:00 EDT 2020}
}

Works referenced in this record:

Increasing the efficiency of Monte Carlo simulation with sampling from an approximate potential
journal, January 2013


Theoretical comparisons of block bootstrap methods
journal, March 1999


ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05720A

Thermal Density Functional Theory in Context
book, January 2014

  • Pribram-Jones, Aurora; Pittalis, Stefano; Gross, E. K. U.
  • Lecture Notes in Computational Science and Engineering
  • DOI: 10.1007/978-3-319-04912-0_2

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Vapor–Liquid Coexistence Curves for Methanol and Methane Using Dispersion-Corrected Density Functional Theory
journal, October 2011

  • McGrath, Matthew J.; Kuo, I. -F. Will; Ghogomu, Julius N.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 40
  • DOI: 10.1021/jp205072v

An efficient approach to ab initio Monte Carlo simulation
journal, January 2014

  • Leiding, Jeff; Coe, Joshua D.
  • The Journal of Chemical Physics, Vol. 140, Issue 3
  • DOI: 10.1063/1.4855755

First-Principles Monte Carlo Simulations of Reaction Equilibria in Compressed Vapors
journal, April 2016


Using a classical potential as an efficient importance function for sampling from an ab initio potential
journal, January 2000

  • Iftimie, Radu; Salahub, Dennis; Wei, Dongqing
  • The Journal of Chemical Physics, Vol. 113, Issue 12
  • DOI: 10.1063/1.1289534

Layered nested Markov chain Monte Carlo
journal, August 2018

  • Jackson, Nicholas E.; Webb, Michael A.; de Pablo, Juan J.
  • The Journal of Chemical Physics, Vol. 149, Issue 7
  • DOI: 10.1063/1.5030531

Computer Simulation of Liquids
book, June 2017


Less is more: Sampling chemical space with active learning
journal, June 2018

  • Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5023802

High-temperature miscibility of iron and rock during terrestrial planet formation
journal, January 2015


Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


Reactive Monte Carlo sampling with an ab initio potential
journal, May 2016

  • Leiding, Jeff; Coe, Joshua D.
  • The Journal of Chemical Physics, Vol. 144, Issue 17
  • DOI: 10.1063/1.4948303

Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles
journal, October 2007

  • Whitelam, Stephen; Geissler, Phillip L.
  • The Journal of Chemical Physics, Vol. 127, Issue 15
  • DOI: 10.1063/1.2790421

A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians
journal, October 2018

  • Li, Haichen; Collins, Christopher; Tanha, Matteus
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 11
  • DOI: 10.1021/acs.jctc.8b00873

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

Adaptive machine learning framework to accelerate ab initio molecular dynamics
journal, December 2014

  • Botu, Venkatesh; Ramprasad, Rampi
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24836

Application of the ChIMES Force Field to Nonreactive Molecular Systems: Water at Ambient Conditions
journal, November 2018

  • Lindsey, Rebecca K.; Fried, Laurence E.; Goldman, Nir
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00831

Optimized Nested Markov Chain Monte Carlo Sampling: Application to the Liquid Nitrogen Hugoniot Using Density Functional Theory
conference, January 2009

  • Shaw, M. Sam; Coe, Joshua D.; Sewell, Thomas D.
  • SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3295191

Ultrafast shock synthesis of nanocarbon from a liquid precursor
journal, January 2020

  • Armstrong, Michael R.; Lindsey, Rebecca K.; Goldman, Nir
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-019-14034-z

Equation of State Calculations by Fast Computing Machines
journal, June 1953

  • Metropolis, Nicholas; Rosenbluth, Arianna W.; Rosenbluth, Marshall N.
  • The Journal of Chemical Physics, Vol. 21, Issue 6
  • DOI: 10.1063/1.1699114

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Nested Markov chain Monte Carlo sampling of a density functional theory potential: Equilibrium thermodynamics of dense fluid nitrogen
journal, August 2009

  • Coe, Joshua D.; Sewell, Thomas D.; Shaw, M. Sam
  • The Journal of Chemical Physics, Vol. 131, Issue 7
  • DOI: 10.1063/1.3200904

Extending the accuracy of the SNAP interatomic potential form
journal, June 2018

  • Wood, Mitchell A.; Thompson, Aidan P.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017641

Hierarchical modeling of molecular energies using a deep neural network
journal, June 2018

  • Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5011181

Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models
journal, January 2013

  • McGrath, Matthew J.; Kuo, I-F. Will; Ngouana W., Brice F.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 32
  • DOI: 10.1039/c3cp51762d

Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
journal, September 2007

  • VandeVondele, Joost; Hutter, Jürg
  • The Journal of Chemical Physics, Vol. 127, Issue 11
  • DOI: 10.1063/1.2770708

A universal strategy for the creation of machine learning-based atomistic force fields
journal, September 2017


Efficient sampling for ab initio Monte Carlo simulation of molecular clusters using an interpolated potential energy surface
journal, January 2009

  • Nakayama, Akira; Seki, Nanami; Taketsugu, Tetsuya
  • The Journal of Chemical Physics, Vol. 130, Issue 2
  • DOI: 10.1063/1.3055910

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
journal, July 2019


Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks
journal, July 2018

  • Nebgen, Benjamin; Lubbers, Nicholas; Smith, Justin S.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 9
  • DOI: 10.1021/acs.jctc.8b00524

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Improving the efficiency of the configurational-bias Monte Carlo algorithm
journal, July 1998


An electrostatic spectral neighbor analysis potential for lithium nitride
journal, July 2019


Liquid Water from First Principles:  Investigation of Different Sampling Approaches
journal, August 2004

  • Kuo, I-Feng W.; Mundy, Christopher J.; McGrath, Matthew J.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 34
  • DOI: 10.1021/jp047788i

First principles Monte Carlo simulations of aggregation in the vapor phase of hydrogen fluoride
journal, January 2010

  • McGrath, Matthew J.; Ghogomu, Julius. N.; Mundy, Christopher J.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 27
  • DOI: 10.1039/b924506e

Optimized Nested Markov Chain Monte Carlo Sampling: Theory
conference, January 2009

  • Coe, Joshua D.; Sewell, Thomas D.; Shaw, M. Sam
  • SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3295190

Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
journal, August 1998


Ab initio simulations of hot dense methane during shock experiments
journal, December 2012

  • Sherman, Benjamin L.; Wilson, Hugh F.; Weeraratne, Dayanthie
  • Physical Review B, Vol. 86, Issue 22
  • DOI: 10.1103/PhysRevB.86.224113

Separable dual-space Gaussian pseudopotentials
journal, July 1996


Issues on the Choice of a Proper Time Step in Molecular Dynamics
journal, January 2014


How to simulate patchy particles
journal, May 2018

  • Rovigatti, Lorenzo; Russo, John; Romano, Flavio
  • The European Physical Journal E, Vol. 41, Issue 5
  • DOI: 10.1140/epje/i2018-11667-x

Monte Carlo simulations using sampling from an approximate potential
journal, May 2003

  • Gelb, Lev D.
  • The Journal of Chemical Physics, Vol. 118, Issue 17
  • DOI: 10.1063/1.1563597

ChIMES: A Force Matched Potential with Explicit Three-Body Interactions for Molten Carbon
journal, November 2017

  • Lindsey, Rebecca K.; Fried, Laurence E.; Goldman, Nir
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 12
  • DOI: 10.1021/acs.jctc.7b00867

Isobaric-Isothermal Monte Carlo Simulations from First Principles: Application to Liquid Water at Ambient Conditions
journal, September 2005

  • McGrath, Matthew J.; Siepmann, J. Ilja; Kuo, I-Feng W.
  • ChemPhysChem, Vol. 6, Issue 9
  • DOI: 10.1002/cphc.200400580

Vapor–liquid equilibria of water from first principles: comparison of density functionals and basis sets
journal, November 2006


Density functional theory guided Monte Carlo simulations: Application to melting of Na 13
journal, February 2012

  • Bulusu, Satya; Fournier, René
  • The Journal of Chemical Physics, Vol. 136, Issue 6
  • DOI: 10.1063/1.3684628

cp2k: atomistic simulations of condensed matter systems
journal, June 2013

  • Hutter, Jürg; Iannuzzi, Marcella; Schiffmann, Florian
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 1
  • DOI: 10.1002/wcms.1159