DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Pressure Infiltration/Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores

Abstract

Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage, or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration/expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process, and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 nm and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient additions/removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid/liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. Furthermore, these changes are consistent with strongmore » desalination effects at the lower pore size observed irrespective of external pressure and initial concentration.« less

Authors:
 [1];  [2];  [1]
  1. Virginia Commonwealth University, Richmond, VA (United States)
  2. J. E. Purkyne University (Czech Republic)
Publication Date:
Research Org.:
Virginia Commonwealth Univ., Richmond, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1663270
Grant/Contract Number:  
SC0004406; CHE-1800120; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 124; Journal Issue: 42; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Pressure; pore permeation; energy absorption

Citation Formats

Zamfir, Serban Gabriel, Moucka, Filip, and Bratko, Dusan. High Pressure Infiltration/Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores. United States: N. p., 2020. Web. doi:10.1021/acs.jpcc.0c07184.
Zamfir, Serban Gabriel, Moucka, Filip, & Bratko, Dusan. High Pressure Infiltration/Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores. United States. https://doi.org/10.1021/acs.jpcc.0c07184
Zamfir, Serban Gabriel, Moucka, Filip, and Bratko, Dusan. Wed . "High Pressure Infiltration/Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores". United States. https://doi.org/10.1021/acs.jpcc.0c07184. https://www.osti.gov/servlets/purl/1663270.
@article{osti_1663270,
title = {High Pressure Infiltration/Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores},
author = {Zamfir, Serban Gabriel and Moucka, Filip and Bratko, Dusan},
abstractNote = {Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage, or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration/expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process, and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 nm and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient additions/removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid/liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. Furthermore, these changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration.},
doi = {10.1021/acs.jpcc.0c07184},
journal = {Journal of Physical Chemistry. C},
number = 42,
volume = 124,
place = {United States},
year = {Wed Sep 23 00:00:00 EDT 2020},
month = {Wed Sep 23 00:00:00 EDT 2020}
}

Works referenced in this record:

Effect of Field Direction on Electrowetting in a Nanopore
journal, March 2007

  • Bratko, Dusan; Daub, Christopher D.; Leung, Kevin
  • Journal of the American Chemical Society, Vol. 129, Issue 9
  • DOI: 10.1021/ja0659370

Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation
journal, March 2015

  • Moucka, Filip; Bratko, Dusan; Luzar, Alenka
  • The Journal of Chemical Physics, Vol. 142, Issue 12
  • DOI: 10.1063/1.4914461

Extended surfaces modulate hydrophobic interactions of neighboring solutes
journal, October 2011

  • Patel, A. J.; Varilly, P.; Jamadagni, S. N.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 43
  • DOI: 10.1073/pnas.1110703108

Drastic change of the intrusion–extrusion behavior of electrolyte solutions in pure silica *BEA-type zeolite
journal, January 2014

  • Ryzhikov, A.; Khay, I.; Nouali, H.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 33
  • DOI: 10.1039/C4CP01862A

Les systèmes hétérogènes « eau–zéolithe hydrophobe »: de nouveaux ressorts moléculaires
journal, January 2002


Ewald summation for systems with slab geometry
journal, August 1999

  • Yeh, In-Chul; Berkowitz, Max L.
  • The Journal of Chemical Physics, Vol. 111, Issue 7
  • DOI: 10.1063/1.479595

Boundary condition effects in simulations of water confined between planar walls
journal, May 1996


Mechanical, Thermal, and Electrical Energy Storage in a Single Working Body: Electrification and Thermal Effects upon Pressure-Induced Water Intrusion–Extrusion in Nanoporous Solids
journal, February 2017

  • Grosu, Yaroslav; Mierzwa, Michał; Eroshenko, Valentine A.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 8
  • DOI: 10.1021/acsami.6b14422

Wettability of pristine and alkyl-functionalized graphane
journal, July 2012

  • Vanzo, Davide; Bratko, Dusan; Luzar, Alenka
  • The Journal of Chemical Physics, Vol. 137, Issue 3
  • DOI: 10.1063/1.4732520

Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters
journal, October 2009

  • Joung, In Suk; Cheatham, Thomas E.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 40
  • DOI: 10.1021/jp902584c

Continuous Fractional Component Monte Carlo:  An Adaptive Biasing Method for Open System Atomistic Simulations
journal, May 2007

  • Shi, Wei; Maginn, Edward J.
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 4
  • DOI: 10.1021/ct7000039

Interaction between hydrophobic surfaces with metastable intervening liquid
journal, August 2001

  • Bratko, D.; Curtis, R. A.; Blanch, H. W.
  • The Journal of Chemical Physics, Vol. 115, Issue 8
  • DOI: 10.1063/1.1386926

Molecular polarizability in open ensemble simulations of aqueous nanoconfinements under electric field
journal, April 2019

  • Moučka, F.; Zamfir, S.; Bratko, D.
  • The Journal of Chemical Physics, Vol. 150, Issue 16
  • DOI: 10.1063/1.5094170

Interfacial Tension of Hydrocarbon + Water/Brine Systems under High Pressure
journal, January 1996

  • Cai, Bi-Yu; Yang, Ji-Tao; Guo, Tian-Min
  • Journal of Chemical & Engineering Data, Vol. 41, Issue 3
  • DOI: 10.1021/je950259a

Effect of Pressure on Interfacial Tension between Oil and Water
journal, February 1977

  • Matubayasi, Norihiro; Motomura, Kinsi; Kaneshina, Shoji
  • Bulletin of the Chemical Society of Japan, Vol. 50, Issue 2
  • DOI: 10.1246/bcsj.50.523

Charge fluctuation in reverse micelles
journal, October 1991

  • Bratko, D.; Woodward, C. E.; Luzar, A.
  • The Journal of Chemical Physics, Vol. 95, Issue 7
  • DOI: 10.1063/1.461671

Intrusion and extrusion of water in hydrophobic nanopores
journal, November 2017

  • Tinti, Antonio; Giacomello, Alberto; Grosu, Yaroslav
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 48
  • DOI: 10.1073/pnas.1714796114

Structural interpretation of the energetic performances of a pure silica LTA-type zeolite
journal, January 2020

  • Confalonieri, Giorgia; Ryzhikov, Andrey; Arletti, Rossella
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 9
  • DOI: 10.1039/C9CP06760D

EQUILIBRIUM IN BINARY SYSTEMS UNDER PRESSURE. I. AN EXPERIMENTAL AND THERMODYNAMIC INVESTIGATION OF THE SYSTEM, NaCl-H 2 O, AT 25°
journal, October 1931

  • Adams, L. H.
  • Journal of the American Chemical Society, Vol. 53, Issue 10
  • DOI: 10.1021/ja01361a020

Free Energy Barriers to Evaporation of Water in Hydrophobic Confinement
journal, October 2012

  • Sharma, Sumit; Debenedetti, Pablo G.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 44
  • DOI: 10.1021/jp308362h

Absolute hydration free energies of ions, ion–water clusters, and quasichemical theory
journal, August 2003

  • Asthagiri, D.; Pratt, Lawrence R.; Ashbaugh, H. S.
  • The Journal of Chemical Physics, Vol. 119, Issue 5
  • DOI: 10.1063/1.1587122

Ellipsoidal model of polyelectrolyte solutions
journal, June 1984

  • Bratko, D.; Dolar, D.
  • The Journal of Chemical Physics, Vol. 80, Issue 11
  • DOI: 10.1063/1.446601

The contribution of hydrogen bonds to the surface tension of water
journal, April 1983


Activation Barrier Scaling for the Spontaneous Evaporation of Confined Water
journal, December 2004

  • Luzar, Alenka
  • The Journal of Physical Chemistry B, Vol. 108, Issue 51
  • DOI: 10.1021/jp0470703

Influence of anions on liquid infiltration and defiltration in a zeolite Y
journal, September 2008


Water Condensation in Hydrophobic Silicalite-1 Zeolite:  A Molecular Simulation Study
journal, December 2005

  • Desbiens, Nicolas; Boutin, Anne; Demachy, Isabelle
  • The Journal of Physical Chemistry B, Vol. 109, Issue 50
  • DOI: 10.1021/jp054168o

Energetic performances of FER-type zeolite in the presence of electrolyte solutions under high pressure
journal, July 2017


Effect of Electric Field on Liquid Infiltration into Hydrophobic Nanopores
journal, May 2011

  • Xu, Baoxing; Qiao, Yu; Zhou, Qulan
  • Langmuir, Vol. 27, Issue 10
  • DOI: 10.1021/la200477y

A volume-memory liquid
journal, October 2007

  • Han, A.; Qiao, Y.
  • Applied Physics Letters, Vol. 91, Issue 17
  • DOI: 10.1063/1.2803752

Energetics: A New Field of Applications for Hydrophobic Zeolites
journal, August 2001

  • Eroshenko, Valentin; Regis, Robert-Charles; Soulard, Michel
  • Journal of the American Chemical Society, Vol. 123, Issue 33
  • DOI: 10.1021/ja011011a

Thermodynamics of water intrusion in nanoporous hydrophobic solids
journal, January 2008

  • Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 32
  • DOI: 10.1039/b807471b

Molecular Simulation of Aqueous Electrolyte Solubility. 2. Osmotic Ensemble Monte Carlo Methodology for Free Energy and Solubility Calculations and Application to NaCl
journal, June 2011

  • Moučka, Filip; Lísal, Martin; Škvor, Jiří
  • The Journal of Physical Chemistry B, Vol. 115, Issue 24
  • DOI: 10.1021/jp202054d

Deconstructing the Confinement Effect upon the Organization and Dynamics of Water in Hydrophobic Nanoporous Materials: Lessons Learned from Zeolites
journal, September 2017

  • Zhou, Tiecheng; Bai, Peng; Siepmann, J. Ilja
  • The Journal of Physical Chemistry C, Vol. 121, Issue 40
  • DOI: 10.1021/acs.jpcc.7b04991

Water Condensation in Hydrophobic Nanopores
journal, August 2005

  • Desbiens, Nicolas; Demachy, Isabelle; Fuchs, Alain H.
  • Angewandte Chemie International Edition, Vol. 44, Issue 33
  • DOI: 10.1002/anie.200501250

Structure, Dynamics, and Thermodynamics of Intruded Electrolytes in ZIF-8
journal, May 2019

  • Fraux, Guillaume; Boutin, Anne; Fuchs, Alain H.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 25
  • DOI: 10.1021/acs.jpcc.9b02718

Salt and Water Uptake in Nanoconfinement under Applied Electric Field: An Open Ensemble Monte Carlo Study
journal, August 2015

  • Moucka, Filip; Bratko, Dusan; Luzar, Alenka
  • The Journal of Physical Chemistry C, Vol. 119, Issue 35
  • DOI: 10.1021/acs.jpcc.5b04725

Phase Diagram of Water Confined by Graphene
journal, April 2018


Water-mediated ordering of nanoparticles in an electric field
journal, January 2009

  • Bratko, Dusan; Daub, Christopher D.; Luzar, Alenka
  • Faraday Discuss., Vol. 141
  • DOI: 10.1039/B809135H

Modeling the Hydration-Induced Structural Transitions of the SAPO-34 Zeolite and Their Impact on the Water’s Sorbed Phase Equilibrium and Dynamics
journal, May 2020

  • Kolokathis, Panagiotis D.; Pantatosaki, Evangelia; Papadopoulos, George K.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 21
  • DOI: 10.1021/acs.jpcc.0c02174

Treatment of electrostatic interactions in computer simulations and calculation of thermodynamic properties such as free energies and pressures
conference, January 1999

  • Hummer, Gerhard; Pratt, Lawrence R.; Garcı́a, Angel E.
  • SIMULATION AND THEORY OF ELECTROSTATIC INTERACTIONS IN SOLUTION
  • DOI: 10.1063/1.1301522

Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields
journal, March 2015

  • Moučka, Filip; Nezbeda, Ivo; Smith, William R.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 4
  • DOI: 10.1021/acs.jctc.5b00018

A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study
journal, February 1994

  • Lee, Song Hi; Rossky, Peter J.
  • The Journal of Chemical Physics, Vol. 100, Issue 4
  • DOI: 10.1063/1.466425

Molecular simulation studies of water physisorption in zeolites
journal, January 2006

  • Di Lella, Angela; Desbiens, Nicolas; Boutin, Anne
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 46
  • DOI: 10.1039/b610621h

Dynamic Control of Nanopore Wetting in Water and Saline Solutions under an Electric Field
journal, September 2014

  • Vanzo, Davide; Bratko, Dusan; Luzar, Alenka
  • The Journal of Physical Chemistry B, Vol. 119, Issue 29
  • DOI: 10.1021/jp506389p

Energetic Performances of ZIF-8 Derivatives: Impact of the Substitution (Me, Cl, or Br) on Imidazolate Linker
journal, February 2018

  • Mortada, Boushra; Chaplais, Gérald; Veremeienko, Vasyl
  • The Journal of Physical Chemistry C, Vol. 122, Issue 7
  • DOI: 10.1021/acs.jpcc.7b08999

Investigation of the Energetic Performance of Pure Silica ITQ-4 (IFR) Zeolite under High Pressure Water Intrusion
journal, June 2010

  • Saada, Mohamed Ali; Rigolet, Séverinne; Paillaud, Jean-Louis
  • The Journal of Physical Chemistry C, Vol. 114, Issue 26
  • DOI: 10.1021/jp102663f

The P,V,T,x properties of binary aqueous chloride solutions up to T=573K and 100MPa
journal, July 2008


The Effect of Local Defects on Water Adsorption in Silicalite-1 Zeolite:  A Joint Experimental and Molecular Simulation Study
journal, September 2007

  • Trzpit, M.; Soulard, M.; Patarin, J.
  • Langmuir, Vol. 23, Issue 20
  • DOI: 10.1021/la7011205

A Highly Stable Nonhysteretic {Cu 2 (tebpz) MOF+water} Molecular Spring
journal, September 2016


Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates
journal, April 2006

  • Giovambattista, Nicolas; Rossky, Peter J.; Debenedetti, Pablo G.
  • Physical Review E, Vol. 73, Issue 4
  • DOI: 10.1103/PhysRevE.73.041604

Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores
journal, July 2015


Molecular Theories and Simulation of Ions and Polar Molecules in Water
journal, October 1998

  • Hummer, Gerhard; Pratt, Lawrence R.; García, Angel E.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 41
  • DOI: 10.1021/jp982195r

High pressure intrusion–extrusion of electrolyte solutions in aluminosilicate FAU and *BEA-type zeolites
journal, February 2016


Dynamics of capillary evaporation. II. Free energy barriers
journal, October 2000

  • Leung, Kevin; Luzar, Alenka
  • The Journal of Chemical Physics, Vol. 113, Issue 14
  • DOI: 10.1063/1.1290479

Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations
journal, July 2008

  • Joung, In Suk; Cheatham, Thomas E.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 30
  • DOI: 10.1021/jp8001614

Free Energy of Ionic Hydration
journal, January 1996

  • Hummer, Gerhard; Pratt, Lawrence R.; García, Angel E.
  • The Journal of Physical Chemistry, Vol. 100, Issue 4
  • DOI: 10.1021/jp951011v

Dynamics of capillary evaporation. I. Effect of morphology of hydrophobic surfaces
journal, October 2000

  • Luzar, Alenka; Leung, Kevin
  • The Journal of Chemical Physics, Vol. 113, Issue 14
  • DOI: 10.1063/1.1290478

Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins
journal, January 2010

  • Acharya, Hari; Vembanur, Srivathsan; Jamadagni, Sumanth N.
  • Faraday Discussions, Vol. 146
  • DOI: 10.1039/b927019a

The missing term in effective pair potentials
journal, November 1987

  • Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.
  • The Journal of Physical Chemistry, Vol. 91, Issue 24
  • DOI: 10.1021/j100308a038

Interfacial thermodynamics of confined water near molecularly rough surfaces
journal, January 2010

  • Mittal, Jeetain; Hummer, Gerhard
  • Faraday Discussions, Vol. 146
  • DOI: 10.1039/b925913a

Ion-Specific Effects in the Colloid−Colloid or Protein−Protein Potential of Mean Force:  Role of Salt−Macroion van der Waals Interactions
journal, July 2004

  • Tavares, F. W.; Bratko, D.; Blanch, H. W.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 26
  • DOI: 10.1021/jp037809t

Computational Study of Water Adsorption in the Hydrophobic Metal–Organic Framework ZIF-8: Adsorption Mechanism and Acceleration of the Simulations
journal, October 2017

  • Zhang, Hongda; Snurr, Randall Q.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 43
  • DOI: 10.1021/acs.jpcc.7b06405

Field-exposed water in a nanopore: liquid or vapour?
journal, January 2008

  • Bratko, Dusan; Daub, Christopher D.; Luzar, Alenka
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 45
  • DOI: 10.1039/b809072f

Electrical double layer interactions with image charges
journal, August 1986