DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dialing in Direct Air Capture of CO2 by Crystal Engineering of Bis-iminoguanidines

Abstract

Direct air capture (DAC) technologies that extract carbon dioxide from the atmosphere via chemical processes have the potential to restore the atmospheric CO2 concentration to an optimal level. This study elucidates structure-property relationships in DAC by crystallization of bis-iminoguanidine (BIG) carbonate salts. Here, their crystal structures are analyzed by X-ray and neutron diffraction to accurately measure key structural parameters including molecular conformations, hydrogen bonding, and π-stacking. Experimental measurements of key properties, such as aqueous solubilities and regeneration energies and temperatures, are complemented by first-principles calculations of lattice and hydration free energies, as well as free energies of reactions with CO2, and BIG regenerations. Minor structural modifications in the molecular structure of the BIGs are found to result in major changes in the crystal structures and the aqueous solubilities within the series, leading to enhanced DAC.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [1];  [2]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1657966
Alternate Identifier(s):
OSTI ID: 1646549
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: TBD; Journal Issue: TBD; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; direct air capture; carbon dioxide fixation; guanidines; hydrogen bonds; crystallization

Citation Formats

Custelcean, Radu, Williams, Neil J., Wang, Xiaoping, Garrabrant, Kathleen A., Martin, Halie J., Kidder, Michelle K., Ivanov, Alexander S., and Bryantsev, Vyacheslav S. Dialing in Direct Air Capture of CO2 by Crystal Engineering of Bis-iminoguanidines. United States: N. p., 2020. Web. doi:10.1002/cssc.202001114.
Custelcean, Radu, Williams, Neil J., Wang, Xiaoping, Garrabrant, Kathleen A., Martin, Halie J., Kidder, Michelle K., Ivanov, Alexander S., & Bryantsev, Vyacheslav S. Dialing in Direct Air Capture of CO2 by Crystal Engineering of Bis-iminoguanidines. United States. https://doi.org/10.1002/cssc.202001114
Custelcean, Radu, Williams, Neil J., Wang, Xiaoping, Garrabrant, Kathleen A., Martin, Halie J., Kidder, Michelle K., Ivanov, Alexander S., and Bryantsev, Vyacheslav S. Mon . "Dialing in Direct Air Capture of CO2 by Crystal Engineering of Bis-iminoguanidines". United States. https://doi.org/10.1002/cssc.202001114. https://www.osti.gov/servlets/purl/1657966.
@article{osti_1657966,
title = {Dialing in Direct Air Capture of CO2 by Crystal Engineering of Bis-iminoguanidines},
author = {Custelcean, Radu and Williams, Neil J. and Wang, Xiaoping and Garrabrant, Kathleen A. and Martin, Halie J. and Kidder, Michelle K. and Ivanov, Alexander S. and Bryantsev, Vyacheslav S.},
abstractNote = {Direct air capture (DAC) technologies that extract carbon dioxide from the atmosphere via chemical processes have the potential to restore the atmospheric CO2 concentration to an optimal level. This study elucidates structure-property relationships in DAC by crystallization of bis-iminoguanidine (BIG) carbonate salts. Here, their crystal structures are analyzed by X-ray and neutron diffraction to accurately measure key structural parameters including molecular conformations, hydrogen bonding, and π-stacking. Experimental measurements of key properties, such as aqueous solubilities and regeneration energies and temperatures, are complemented by first-principles calculations of lattice and hydration free energies, as well as free energies of reactions with CO2, and BIG regenerations. Minor structural modifications in the molecular structure of the BIGs are found to result in major changes in the crystal structures and the aqueous solubilities within the series, leading to enhanced DAC.},
doi = {10.1002/cssc.202001114},
journal = {ChemSusChem},
number = TBD,
volume = TBD,
place = {United States},
year = {Mon Jul 20 00:00:00 EDT 2020},
month = {Mon Jul 20 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Net-zero emissions energy systems
journal, June 2018


CO2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers
journal, March 2019


CO 2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent
journal, December 2016

  • Seipp, Charles A.; Williams, Neil J.; Kidder, Michelle K.
  • Angewandte Chemie, Vol. 129, Issue 4
  • DOI: 10.1002/ange.201610916

Sorbenten zur direkten Gewinnung von CO 2 aus der Umgebungsluft
journal, February 2020

  • Shi, Xiaoyang; Xiao, Hang; Azarabadi, Habib
  • Angewandte Chemie, Vol. 132, Issue 18
  • DOI: 10.1002/ange.201906756

Direct Air Capture of CO 2 with Aqueous Amino Acids and Solid Bis-iminoguanidines (BIGs)
journal, November 2019

  • Custelcean, Radu; Williams, Neil J.; Garrabrant, Kathleen A.
  • Industrial & Engineering Chemistry Research, Vol. 58, Issue 51
  • DOI: 10.1021/acs.iecr.9b04800

Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis
journal, January 2013

  • Wang, Tao; Lackner, Klaus S.; Wright, Allen B.
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 2
  • DOI: 10.1039/C2CP43124F

A Process for Capturing CO2 from the Atmosphere
journal, August 2018


Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
journal, September 2015

  • Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop
  • Accounts of Chemical Research, Vol. 48, Issue 10
  • DOI: 10.1021/acs.accounts.5b00284

Direct Air Capture of CO 2 by Physisorbent Materials
journal, October 2015

  • Kumar, Amrit; Madden, David G.; Lusi, Matteo
  • Angewandte Chemie, Vol. 127, Issue 48
  • DOI: 10.1002/ange.201506952

Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
journal, August 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Angewandte Chemie, Vol. 127, Issue 36
  • DOI: 10.1002/ange.201506314

Sorbents for the Direct Capture of CO 2 from Ambient Air
journal, February 2020

  • Shi, Xiaoyang; Xiao, Hang; Azarabadi, Habib
  • Angewandte Chemie International Edition, Vol. 59, Issue 18
  • DOI: 10.1002/anie.201906756

Direct CO 2 Capture from Air using Poly(ethylenimine)-Loaded Polymer/Silica Fiber Sorbents
journal, February 2019


Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
journal, February 2016

  • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
  • Angewandte Chemie, Vol. 128, Issue 12
  • DOI: 10.1002/ange.201507846

Negative carbon dioxide emissions
journal, January 2020


Hydroxide Based Integrated CO 2 Capture from Air and Conversion to Methanol
journal, February 2020

  • Sen, Raktim; Goeppert, Alain; Kar, Sayan
  • Journal of the American Chemical Society, Vol. 142, Issue 10
  • DOI: 10.1021/jacs.9b12711

Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power
journal, May 2018


CO 2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent
journal, December 2016

  • Seipp, Charles A.; Williams, Neil J.; Kidder, Michelle K.
  • Angewandte Chemie International Edition, Vol. 56, Issue 4
  • DOI: 10.1002/anie.201610916

Energy-Efficient CO 2 Capture from Flue Gas by Absorption with Amino Acids and Crystallization with a Bis-Iminoguanidine
journal, May 2019

  • Garrabrant, Kathleen A.; Williams, Neil J.; Holguin, Erick
  • Industrial & Engineering Chemistry Research, Vol. 58, Issue 24
  • DOI: 10.1021/acs.iecr.9b00954

Aqueous Sulfate Separation by Sequestration of [(SO 4 ) 2 (H 2 O) 4 ] 4− Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals
journal, December 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Chemistry - A European Journal, Vol. 22, Issue 6
  • DOI: 10.1002/chem.201504651

Heat and mass transfer of temperature–vacuum swing desorption for CO2 capture from air
journal, January 2016

  • Wurzbacher, Jan Andre; Gebald, Christoph; Brunner, Samuel
  • Chemical Engineering Journal, Vol. 283
  • DOI: 10.1016/j.cej.2015.08.035

Amine-Based Nanofibrillated Cellulose As Adsorbent for CO 2 Capture from Air
journal, October 2011

  • Gebald, Christoph; Wurzbacher, Jan Andre; Tingaut, Philippe
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es202223p

Direct Capture of CO2 from Ambient Air
journal, August 2016

  • Sanz-Pérez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.
  • Chemical Reviews, Vol. 116, Issue 19, p. 11840-11876
  • DOI: 10.1021/acs.chemrev.6b00173

Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
journal, February 2016

  • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
  • Angewandte Chemie International Edition, Vol. 55, Issue 12
  • DOI: 10.1002/anie.201507846

A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO 2 versus MEA-Based Postcombustion Capture
journal, December 2016

  • van der Giesen, Coen; Meinrenken, Christoph J.; Kleijn, René
  • Environmental Science & Technology, Vol. 51, Issue 2
  • DOI: 10.1021/acs.est.6b05028

Flue-gas and direct-air capture of CO 2 by porous metal–organic materials
journal, January 2017

  • Madden, David G.; Scott, Hayley S.; Kumar, Amrit
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 375, Issue 2084
  • DOI: 10.1098/rsta.2016.0025

Direct Air Capture of CO 2 by Physisorbent Materials
journal, October 2015

  • Kumar, Amrit; Madden, David G.; Lusi, Matteo
  • Angewandte Chemie International Edition, Vol. 54, Issue 48
  • DOI: 10.1002/anie.201506952

Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
journal, August 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Angewandte Chemie International Edition, Vol. 54, Issue 36
  • DOI: 10.1002/anie.201506314