DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Breaking Scaling Relationships in CO2 Electroreduction with Isoelectronic Analogs [Fe4N(CO)12] and [Fe3MnO(CO)12]

Abstract

[Fe4N(CO)12]-0 and [Fe3MnO(CO)12]- have the same total electron count and overall charge, as well as similar reduction potentials of -1.21 and -1.17 V vs SCE in MeCN, respectively. Both clusters form the reduced hydride upon single electron transfer (ET) and proton transfer (PT). It is known that [Fe4N(CO)12]- is an electrocatalyst for selective CO2 reduction to formate at -1.2 V vs SCE in either pH 7 buffered water or in MeCN/H2O (95:5) and an effective electrocatalyst for H+ reduction to H2 under N2 under the same conditions. In contrast, [Fe3MnO(CO)12]=- affords no products upon electrolysis, beyond [H-Fe3MnO(CO)12]-. We determine that [H-Fe3MnO(CO)12]- is a weaker hydride donor than [H-Fe4N(CO)12]- by about 4 kcal mol–1, and this is a breaking of the hydricity versus reduction potential scaling relationship previously established for a series of metal carbonyl clusters electrocatalysts.

Authors:
 [1];  [1]; ORCiD logo [1]
  1. Univ. of California, Davis, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Davis, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1657669
Alternate Identifier(s):
OSTI ID: 1773842
Grant/Contract Number:  
SC0016395
Resource Type:
Accepted Manuscript
Journal Name:
Organometallics
Additional Journal Information:
Journal Volume: 39; Journal Issue: 9; Journal ID: ISSN 0276-7333
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; Redox reactions; Anions; Reaction mechanisms; Electrodes; Catalysts; 25 ENERGY STORAGE; 30 DIRECT ENERGY CONVERSION; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; iron; manganese; electrocatalysis; CO2 reduction

Citation Formats

Carr, Cody R., Cluff, David B., and Berben, Louise A. Breaking Scaling Relationships in CO2 Electroreduction with Isoelectronic Analogs [Fe4N(CO)12]– and [Fe3MnO(CO)12]–. United States: N. p., 2020. Web. doi:10.1021/acs.organomet.9b00848.
Carr, Cody R., Cluff, David B., & Berben, Louise A. Breaking Scaling Relationships in CO2 Electroreduction with Isoelectronic Analogs [Fe4N(CO)12]– and [Fe3MnO(CO)12]–. United States. https://doi.org/10.1021/acs.organomet.9b00848
Carr, Cody R., Cluff, David B., and Berben, Louise A. Mon . "Breaking Scaling Relationships in CO2 Electroreduction with Isoelectronic Analogs [Fe4N(CO)12]– and [Fe3MnO(CO)12]–". United States. https://doi.org/10.1021/acs.organomet.9b00848. https://www.osti.gov/servlets/purl/1657669.
@article{osti_1657669,
title = {Breaking Scaling Relationships in CO2 Electroreduction with Isoelectronic Analogs [Fe4N(CO)12]– and [Fe3MnO(CO)12]–},
author = {Carr, Cody R. and Cluff, David B. and Berben, Louise A.},
abstractNote = {[Fe4N(CO)12]-0 and [Fe3MnO(CO)12]- have the same total electron count and overall charge, as well as similar reduction potentials of -1.21 and -1.17 V vs SCE in MeCN, respectively. Both clusters form the reduced hydride upon single electron transfer (ET) and proton transfer (PT). It is known that [Fe4N(CO)12]- is an electrocatalyst for selective CO2 reduction to formate at -1.2 V vs SCE in either pH 7 buffered water or in MeCN/H2O (95:5) and an effective electrocatalyst for H+ reduction to H2 under N2 under the same conditions. In contrast, [Fe3MnO(CO)12]=- affords no products upon electrolysis, beyond [H-Fe3MnO(CO)12]-. We determine that [H-Fe3MnO(CO)12]- is a weaker hydride donor than [H-Fe4N(CO)12]- by about 4 kcal mol–1, and this is a breaking of the hydricity versus reduction potential scaling relationship previously established for a series of metal carbonyl clusters electrocatalysts.},
doi = {10.1021/acs.organomet.9b00848},
journal = {Organometallics},
number = 9,
volume = 39,
place = {United States},
year = {Mon Mar 02 00:00:00 EST 2020},
month = {Mon Mar 02 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Case for Electrofuels
journal, October 2016


Research opportunities to advance solar energy utilization
journal, January 2016


The Holy Grail: Chemistry Enabling an Economically Viable CO 2 Capture, Utilization, and Storage Strategy
journal, March 2017


What would it take for renewably powered electrosynthesis to displace petrochemical processes?
journal, April 2019


Electrocatalytic and homogeneous approaches to conversion of CO 2 to liquid fuels
journal, January 2009

  • Benson, Eric E.; Kubiak, Clifford P.; Sathrum, Aaron J.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B804323J

Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H 2 Production
journal, March 2018

  • Klug, Christina M.; Cardenas, Allan Jay P.; Bullock, R. Morris
  • ACS Catalysis, Vol. 8, Issue 4
  • DOI: 10.1021/acscatal.7b04379

Identifying and Breaking Scaling Relations in Molecular Catalysis of Electrochemical Reactions
journal, August 2017

  • Pegis, Michael L.; Wise, Catherine F.; Koronkiewicz, Brian
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b05642

Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO 2 -to-CO Electrochemical Conversion
journal, December 2016

  • Azcarate, Iban; Costentin, Cyrille; Robert, Marc
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b07014

Renewable Formate from C–H Bond Formation with CO 2 : Using Iron Carbonyl Clusters as Electrocatalysts
journal, August 2017

  • Loewen, Natalia D.; Neelakantan, Taruna V.; Berben, Louise A.
  • Accounts of Chemical Research, Vol. 50, Issue 9
  • DOI: 10.1021/acs.accounts.7b00302

Towards an intelligent design of molecular electrocatalysts
journal, October 2017

  • Costentin, Cyrille; Savéant, Jean-Michel
  • Nature Reviews Chemistry, Vol. 1, Issue 11
  • DOI: 10.1038/s41570-017-0087

Electrocatalytic Hydrogen Evolution from Water by a Series of Iron Carbonyl Clusters
journal, October 2013

  • Nguyen, An D.; Rail, M. Diego; Shanmugam, Maheswaran
  • Inorganic Chemistry, Vol. 52, Issue 21
  • DOI: 10.1021/ic4023882

Tailoring Electrocatalysts for Selective CO 2 or H + Reduction: Iron Carbonyl Clusters as a Case Study
journal, November 2015


Directing the Reactivity of [HFe 4 N(CO) 12 ] toward H + or CO 2 Reduction by Understanding the Electrocatalytic Mechanism
journal, November 2011

  • Rail, M. Diego; Berben, Louise A.
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja208312t

An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015


Synthesis and Structure of[(PPh3)2N][Fe3Mn(CO)12(μ4-O)]: A Butterfly Oxo Cluster
journal, March 1987

  • Schauer, Cynthia K.; Shriver, Duward F.
  • Angewandte Chemie International Edition in English, Vol. 26, Issue 3
  • DOI: 10.1002/anie.198702551

Synthesis, Structure, and Bonding of Butterfly Clusters Containing .mu.4-Oxo and .mu.4-Sulfido Ligands: [(PPh3)2N][Fe3M(CO)12(.mu.4-E)] (E = O, S; M = Mn, Re)
journal, September 1995

  • Schauer, Cynthia K.; Harris, Suzanne; Sabat, Michal
  • Inorganic Chemistry, Vol. 34, Issue 20
  • DOI: 10.1021/ic00124a017

Metal clusters with exposed and low-coordinate nitride nitrogen atoms
journal, October 1980

  • Tachikawa, M.; Stein, Judith; Muetterties, E. L.
  • Journal of the American Chemical Society, Vol. 102, Issue 21
  • DOI: 10.1021/ja00541a084

Metal clusters. 25. A uniquely bonded C-H group and reactivity of a low-coordinate carbidic carbon atom
journal, June 1980

  • Tachikawa, M.; Muetterties, E. L.
  • Journal of the American Chemical Society, Vol. 102, Issue 13
  • DOI: 10.1021/ja00533a051

A closed three-center carbon-hydrogen-metal interaction. A neutron diffraction study of HFe4(.eta.2-CH)(CO)12
journal, March 1981

  • Beno, M. A.; Williams, Jack M.; Tachikawa, M.
  • Journal of the American Chemical Society, Vol. 103, Issue 6
  • DOI: 10.1021/ja00396a032

Proton reactivity of butterfly oxo and sulfido clusters and structural characterization of HFe3Mn(CO)10(dmpm)(μ4-O)
journal, April 2000


Elements of Molecular and Biomolecular Electrochemistry
book, January 2006


H 2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation
journal, November 2010

  • Fourmond, Vincent; Jacques, Pierre-André; Fontecave, Marc
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic101187v

A pendant proton shuttle on [Fe 4 N(CO) 12 ] alters product selectivity in formate vs. H 2 production via the hydride [H–Fe 4 N(CO) 12 ]
journal, January 2016

  • Loewen, Natalia D.; Thompson, Emily J.; Kagan, Michael
  • Chemical Science, Vol. 7, Issue 4
  • DOI: 10.1039/C5SC03169A

Electrode initiated proton-coupled electron transfer to promote degradation of a nickel( ii ) coordination complex
journal, January 2015

  • McCarthy, Brian D.; Donley, Carrie L.; Dempsey, Jillian L.
  • Chemical Science, Vol. 6, Issue 5
  • DOI: 10.1039/C5SC00476D

Directing the reactivity of metal hydrides for selective CO 2 reduction
journal, November 2018

  • Ceballos, Bianca M.; Yang, Jenny Y.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 50
  • DOI: 10.1073/pnas.1811396115

HRh(dppb) 2 , a Powerful Hydride Donor
journal, October 2002

  • Price, Andrew J.; Ciancanelli, Rebecca; Noll, Bruce C.
  • Organometallics, Vol. 21, Issue 22
  • DOI: 10.1021/om020421k

Trialkylborane-Assisted CO 2 Reduction by Late Transition Metal Hydrides
journal, August 2011

  • Miller, Alexander J. M.; Labinger, Jay A.; Bercaw, John E.
  • Organometallics, Vol. 30, Issue 16
  • DOI: 10.1021/om200364w

Simple construction of an infrared optically transparent thin-layer electrochemical cell
journal, November 1991

  • Krejčik, M.; Daněk, M.; Hartl, F.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 317, Issue 1-2
  • DOI: 10.1016/0022-0728(91)85012-E