DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?

Abstract

Since the first detailed compositional analysis of dissolved organic matter (DOM) in 1995, high resolution mass spectrometry (HRMS) has become a vital tool for DOM characterization. While the upward trend in HRMS for molecular level analysis of DOM continues, so do the challenges of data comparison and interpretation between laboratories operating instruments of differing performance and user operating conditions. It is therefore essential that the community establishes whether data and trends can be compared robustly between research groups. To this end, 4 identically prepared DOM samples were each studied by 16 laboratories, representing 17 commercially-purchased instruments located across 8 countries, using positive- and negative-mode electrospray ionization (ESI) HRMS analysis. Despite the widely reported sensitivity of ESI experiments to sample matrix, preparation, ion source operation and instrument tuning parameters, the instruments used in this study showed relatively low variability between results for the same samples, particularly H/C and AI metrics. The variation in O/C and m/z metrics was relatively higher, although z-score graphs and %BCD demonstrated that the relative difference in general chemical composition between samples was the same for each instrument included in the study. As such, these metrics can be used for fingerprinting of DOM samples and as amore » benchmark for quality control in participating laboratories, with future strides in environmental science building upon these efforts.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6];  [7]; ORCiD logo [8]; ORCiD logo [9];  [10]; ORCiD logo [11]; ORCiD logo [12];  [7]; ORCiD logo [13]; ORCiD logo [8]; ORCiD logo [14];  [15]; ORCiD logo [11]; ORCiD logo [8];  [16] more »; ORCiD logo [4];  [17];  [18]; ORCiD logo [19];  [20];  [21]; ORCiD logo [5];  [22];  [23]; ORCiD logo [24]; ORCiD logo [12]; ORCiD logo [25];  [7]; ORCiD logo [22]; ORCiD logo [11]; ORCiD logo [8];  [17];  [26]; ORCiD logo [26] « less
  1. Uppsala Univ. (Sweden)
  2. Louisiana Universities Marine Consortium, Chauvin LA (United States)
  3. Northeastern Univ., Boston, MA (United States). Barnett Institute of Chemical and Biological Analysis; Northeastern Univ., Boston, MA (United States)
  4. Univ. of Warwick, Coventry (United Kingdom)
  5. Univ. of Wisconsin, Madison, WI (United States)
  6. Catalan Inst. for Water Research (ICRA), Girona (Spain) ;Univ. de Girona (Spain)
  7. Old Dominion Univ., Norfolk, VA (United States)
  8. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
  9. Sorbonne Univ., Paris (France). Inst. Parisien de Chimie Moléculaire
  10. Carl von Ossietzky Univ., Oldenburg (Germany). ICBM‐MPI Bridging Group for Marine Geochemistry, Inst. for Chemistry and Biology of the Marine Environment; Carl von Ossietzky Univ., Oldenburg (Germany). Helmholtz Inst. for Functional Marine Biodiversity
  11. Univ. of Warwick, Coventry (United Kingdom). Molecular Analytical Sciences Centre for Doctoral Training
  12. Max Planck Society, Jena (Germany). Max Planck Inst. for Biogeochemistry
  13. China Univ. of Petroleum Beijing (China). State Key Laboratory of Heavy Oil Processing
  14. Univ. of Alberta, Edmonton, AB (Canada)
  15. Michigan Technological Univ., Houghton, MI (United States)
  16. Michigan Technological Univ., Houghton, MI (United States). Chemical Advanced Resolution Methods Lab.
  17. Chinese Academy of Sciences (CAS), Beijing (China). State Key Lab. of Environmental Chemistry and Ecotoxicology, Research Center for Eco‐Environmental Sciences
  18. Michigan Technological Univ., Houghton, MI (United States) Chemical Advanced Resolution Methods Laboratory
  19. Leibniz Inst. of Freshwater Ecology and Inland Fisheries, Berlin (Germany)
  20. Carl von Ossietzky Univ., Oldenburg (Germany) ICBM‐MPI Bridging Group for Marine Geochemistry, Inst. for Chemistry and Biology of the Marine Environment; Leibniz Inst. for Baltic Sea Research Warnemuende, Rostock (Germany)
  21. Stockholm Univ. (Sweden)
  22. Northeastern Univ., Boston, MA (United States)
  23. Michigan Technological Univ., Houghton, MI (United States). Chemical Advanced Resolution Methods Laboratory
  24. China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing
  25. Univ. of Innsbruck (Austria)
  26. Univ. of New Orleans, LA (United States). Pontchartrain Inst. for Environmental Sciences, Chemical Analysis & Mass Spectrometry Facility
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); European Research Council (ERC); National Science Foundation (NSF); Newton Fund; National Institutes of Health (NIH); Swedish Research Council (SRC)
OSTI Identifier:
1642395
Report Number(s):
PNNL-SA-147033
Journal ID: ISSN 1541-5856
Grant/Contract Number:  
AC05-76RL01830; 2018-04618; 2016-00215; S10OD018475; CBET 614 1802388; AGS-1531454; 275910721; ERC-STG 716196
Resource Type:
Accepted Manuscript
Journal Name:
Limnology and Oceanography Methods
Additional Journal Information:
Journal Volume: 18; Journal Issue: 6; Journal ID: ISSN 1541-5856
Publisher:
Association for the Sciences of Limnology and Oceanography (ASLO)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Hawkes, Jeffrey A., D'Andrilli, Juliana, Agar, Jeffrey N., Barrow, Mark P., Berg, Stephanie M., Catalán, Núria, Chen, Hongmei, Chu, Rosalie K., Cole, Richard B., Dittmar, Thorsten, Gavard, Rémy, Gleixner, Gerd, Hatcher, Patrick G., He, Chen, Hess, Nancy J., Hutchins, Ryan H. S., Ijaz, Amna, Jones, Hugh E., Kew, William, Khaksari, Maryam, Palacio Lozano, Diana Catalina, Lv, Jitao, Mazzoleni, Lynn R., Noriega‐Ortega, Beatriz E., Osterholz, Helena, Radoman, Nikola, Remucal, Christina K., Schmitt, Nicholas D., Schum, Simeon K., Shi, Quan, Simon, Carsten, Singer, Gabriel, Sleighter, Rachel L., Stubbins, Aron, Thomas, Mary J., Tolic, Nikola, Zhang, Shuzhen, Zito, Phoebe, and Podgorski, David C. An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?. United States: N. p., 2020. Web. doi:10.1002/lom3.10364.
Hawkes, Jeffrey A., D'Andrilli, Juliana, Agar, Jeffrey N., Barrow, Mark P., Berg, Stephanie M., Catalán, Núria, Chen, Hongmei, Chu, Rosalie K., Cole, Richard B., Dittmar, Thorsten, Gavard, Rémy, Gleixner, Gerd, Hatcher, Patrick G., He, Chen, Hess, Nancy J., Hutchins, Ryan H. S., Ijaz, Amna, Jones, Hugh E., Kew, William, Khaksari, Maryam, Palacio Lozano, Diana Catalina, Lv, Jitao, Mazzoleni, Lynn R., Noriega‐Ortega, Beatriz E., Osterholz, Helena, Radoman, Nikola, Remucal, Christina K., Schmitt, Nicholas D., Schum, Simeon K., Shi, Quan, Simon, Carsten, Singer, Gabriel, Sleighter, Rachel L., Stubbins, Aron, Thomas, Mary J., Tolic, Nikola, Zhang, Shuzhen, Zito, Phoebe, & Podgorski, David C. An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?. United States. https://doi.org/10.1002/lom3.10364
Hawkes, Jeffrey A., D'Andrilli, Juliana, Agar, Jeffrey N., Barrow, Mark P., Berg, Stephanie M., Catalán, Núria, Chen, Hongmei, Chu, Rosalie K., Cole, Richard B., Dittmar, Thorsten, Gavard, Rémy, Gleixner, Gerd, Hatcher, Patrick G., He, Chen, Hess, Nancy J., Hutchins, Ryan H. S., Ijaz, Amna, Jones, Hugh E., Kew, William, Khaksari, Maryam, Palacio Lozano, Diana Catalina, Lv, Jitao, Mazzoleni, Lynn R., Noriega‐Ortega, Beatriz E., Osterholz, Helena, Radoman, Nikola, Remucal, Christina K., Schmitt, Nicholas D., Schum, Simeon K., Shi, Quan, Simon, Carsten, Singer, Gabriel, Sleighter, Rachel L., Stubbins, Aron, Thomas, Mary J., Tolic, Nikola, Zhang, Shuzhen, Zito, Phoebe, and Podgorski, David C. Fri . "An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?". United States. https://doi.org/10.1002/lom3.10364. https://www.osti.gov/servlets/purl/1642395.
@article{osti_1642395,
title = {An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?},
author = {Hawkes, Jeffrey A. and D'Andrilli, Juliana and Agar, Jeffrey N. and Barrow, Mark P. and Berg, Stephanie M. and Catalán, Núria and Chen, Hongmei and Chu, Rosalie K. and Cole, Richard B. and Dittmar, Thorsten and Gavard, Rémy and Gleixner, Gerd and Hatcher, Patrick G. and He, Chen and Hess, Nancy J. and Hutchins, Ryan H. S. and Ijaz, Amna and Jones, Hugh E. and Kew, William and Khaksari, Maryam and Palacio Lozano, Diana Catalina and Lv, Jitao and Mazzoleni, Lynn R. and Noriega‐Ortega, Beatriz E. and Osterholz, Helena and Radoman, Nikola and Remucal, Christina K. and Schmitt, Nicholas D. and Schum, Simeon K. and Shi, Quan and Simon, Carsten and Singer, Gabriel and Sleighter, Rachel L. and Stubbins, Aron and Thomas, Mary J. and Tolic, Nikola and Zhang, Shuzhen and Zito, Phoebe and Podgorski, David C.},
abstractNote = {Since the first detailed compositional analysis of dissolved organic matter (DOM) in 1995, high resolution mass spectrometry (HRMS) has become a vital tool for DOM characterization. While the upward trend in HRMS for molecular level analysis of DOM continues, so do the challenges of data comparison and interpretation between laboratories operating instruments of differing performance and user operating conditions. It is therefore essential that the community establishes whether data and trends can be compared robustly between research groups. To this end, 4 identically prepared DOM samples were each studied by 16 laboratories, representing 17 commercially-purchased instruments located across 8 countries, using positive- and negative-mode electrospray ionization (ESI) HRMS analysis. Despite the widely reported sensitivity of ESI experiments to sample matrix, preparation, ion source operation and instrument tuning parameters, the instruments used in this study showed relatively low variability between results for the same samples, particularly H/C and AI metrics. The variation in O/C and m/z metrics was relatively higher, although z-score graphs and %BCD demonstrated that the relative difference in general chemical composition between samples was the same for each instrument included in the study. As such, these metrics can be used for fingerprinting of DOM samples and as a benchmark for quality control in participating laboratories, with future strides in environmental science building upon these efforts.},
doi = {10.1002/lom3.10364},
journal = {Limnology and Oceanography Methods},
number = 6,
volume = 18,
place = {United States},
year = {Fri Jun 05 00:00:00 EDT 2020},
month = {Fri Jun 05 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Origin-specific molecular signatures of dissolved organic matter in the Lena Delta
journal, November 2014


Photochemically Induced Changes in Dissolved Organic Matter Identified by Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, February 2009

  • Gonsior, Michael; Peake, Barrie M.; Cooper, William T.
  • Environmental Science & Technology, Vol. 43, Issue 3
  • DOI: 10.1021/es8022804

Interactive van Krevelen diagrams - Advanced visualisation of mass spectrometry data of complex mixtures: Interactive van Krevelen Diagrams
journal, February 2017

  • Kew, William; Blackburn, John W. T.; Clarke, David J.
  • Rapid Communications in Mass Spectrometry, Vol. 31, Issue 7
  • DOI: 10.1002/rcm.7823

Fourier-transform mass spectrometry of large molecules by electrospray ionization.
journal, December 1989

  • Henry, K. D.; Williams, E. R.; Wang, B. H.
  • Proceedings of the National Academy of Sciences, Vol. 86, Issue 23
  • DOI: 10.1073/pnas.86.23.9075

Understanding molecular formula assignment of Fourier transform ion cyclotron resonance mass spectrometry data of natural organic matter from a chemical point of view
journal, October 2014

  • Herzsprung, Peter; Hertkorn, Norbert; von Tümpling, Wolf
  • Analytical and Bioanalytical Chemistry, Vol. 406, Issue 30
  • DOI: 10.1007/s00216-014-8249-y

Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology
journal, May 2014

  • Kellerman, Anne M.; Dittmar, Thorsten; Kothawala, Dolly N.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4804

Electrospray Ionization Efficiency Scale of Organic Compounds
journal, April 2010

  • Oss, Merit; Kruve, Anneli; Herodes, Koit
  • Analytical Chemistry, Vol. 82, Issue 7
  • DOI: 10.1021/ac902856t

Dissolved Organic Matter in Headwater Streams: Compositional Variability across Climatic Regions of North America
journal, October 2012


Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment: Characterization of organic matter in natural waters
journal, January 2009

  • Hockaday, William C.; Purcell, Jeremiah M.; Marshall, Alan G.
  • Limnology and Oceanography: Methods, Vol. 7, Issue 1
  • DOI: 10.4319/lom.2009.7.81

Fourier transform ion cyclotron resonance mass spectrometry: A primer
journal, January 1998


Response to Comment on “Laser Desorption/Ionization Coupled to FTICR Mass Spectrometry for Studies of Natural Organic Matter”
journal, April 2018


Regional diversity of complex dissolved organic matter across forested hemiboreal headwater streams
journal, October 2018


Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution
journal, December 1993

  • Tang, Liang.; Kebarle, Paul.
  • Analytical Chemistry, Vol. 65, Issue 24
  • DOI: 10.1021/ac00072a020

Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean
journal, February 2014

  • Lechtenfeld, Oliver J.; Kattner, Gerhard; Flerus, Ruth
  • Geochimica et Cosmochimica Acta, Vol. 126
  • DOI: 10.1016/j.gca.2013.11.009

Molecular and Structural Characterization of Dissolved Organic Matter from the Deep Ocean by FTICR-MS, Including Hydrophilic Nitrogenous Organic Molecules
journal, March 2008

  • Reemtsma, Thorsten; These, Anja; Linscheid, Michael
  • Environmental Science & Technology, Vol. 42, Issue 5
  • DOI: 10.1021/es7021413

Thermogenic organic matter dissolved in the abyssal ocean
journal, December 2006


Persistence of dissolved organic matter explained by molecular changes during its passage through soil
journal, August 2019


Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica
journal, October 2004


Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems
journal, February 2018

  • Kellerman, Anne M.; Guillemette, François; Podgorski, David C.
  • Environmental Science & Technology, Vol. 52, Issue 5
  • DOI: 10.1021/acs.est.7b05513

Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures: ESI representativeness
journal, March 2014

  • Novotny, Nicole R.; Capley, Erin N.; Stenson, Alexandra C.
  • Journal of Mass Spectrometry, Vol. 49, Issue 4
  • DOI: 10.1002/jms.3345

Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization
journal, March 2010

  • D'Andrilli, Juliana; Dittmar, Thorsten; Koch, Boris P.
  • Rapid Communications in Mass Spectrometry, Vol. 24, Issue 5
  • DOI: 10.1002/rcm.4421

Novel insights into the molecular structure of non-volatile marine dissolved organic sulfur
journal, January 2015


Extreme isomeric complexity of dissolved organic matter found across aquatic environments: Extreme isomeric complexity of DOM
journal, February 2018

  • Hawkes, Jeffrey A.; Patriarca, Claudia; Sjöberg, Per J. R.
  • Limnology and Oceanography Letters, Vol. 3, Issue 2
  • DOI: 10.1002/lol2.10064

Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry
journal, July 2005

  • Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph
  • Geochimica et Cosmochimica Acta, Vol. 69, Issue 13
  • DOI: 10.1016/j.gca.2005.02.027

High-Field FTICR-MS Data Evaluation of Natural Organic Matter: Are CHON 5 S 2 Molecular Class Formulas Assigned to 13 C Isotopic m / z and in Reality CHO Components?
journal, September 2015


Ionization and Fragmentation of Humic Substances in Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry
journal, September 2002

  • Stenson, Alexandra C.; Landing, William M.; Marshall, Alan G.
  • Analytical Chemistry, Vol. 74, Issue 17
  • DOI: 10.1021/ac020019f

Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms
journal, April 2018


Naturally present fatty acids as internal calibrants for Fourier transform mass spectra of dissolved organic matter: DOM mass spectra calibration with fatty acids
journal, June 2008

  • Sleighter, Rachel L.; McKee, Georgina A.; Liu, Zhanfei
  • Limnology and Oceanography: Methods, Vol. 6, Issue 6
  • DOI: 10.4319/lom.2008.6.246

A Method Detection Limit for the Analysis of Natural Organic Matter via Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, July 2014

  • Riedel, Thomas; Dittmar, Thorsten
  • Analytical Chemistry, Vol. 86, Issue 16
  • DOI: 10.1021/ac501946m

Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback
journal, June 2018


Suwannee River Natural Organic Matter: Isolation of the 2R101N Reference Sample by Reverse Osmosis
journal, January 2015

  • Green, Nelson W.; McInnis, Daniel; Hertkorn, Norbert
  • Environmental Engineering Science, Vol. 32, Issue 1
  • DOI: 10.1089/ees.2014.0284

Preparative free-flow electrophoretic offline ESI-Fourier transform ion cyclotron resonance/MS analysis of Suwannee River fulvic acid
journal, May 2010

  • Gaspar, Andras; Harir, Mourad; Hertkorn, Norbert
  • ELECTROPHORESIS, Vol. 31, Issue 12
  • DOI: 10.1002/elps.200900726

Reversed-Phase Chromatography Fractionation Tailored to Mass Spectral Characterization of Humic Substances
journal, March 2008

  • Stenson, Alexandra C.
  • Environmental Science & Technology, Vol. 42, Issue 6
  • DOI: 10.1021/es7022412

Analyzing Solid-Phase Natural Organic Matter Using Laser Desorption Ionization Ultrahigh Resolution Mass Spectrometry
journal, November 2018


An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability: FTICRMS organic matter molecular lability index
journal, November 2015

  • D'Andrilli, Juliana; Cooper, William T.; Foreman, Christine M.
  • Rapid Communications in Mass Spectrometry, Vol. 29, Issue 24
  • DOI: 10.1002/rcm.7400

Universal molecular structures in natural dissolved organic matter
journal, August 2018


Effect of Experimental Parameters on the ESI FT-ICR Mass Spectrum of Fulvic Acid
journal, January 2000

  • Brown, Teresa L.; Rice, James A.
  • Analytical Chemistry, Vol. 72, Issue 2
  • DOI: 10.1021/ac9902087

An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter
journal, April 2014


Complementary Ionization Techniques for the Analysis of Scotch Whisky by High Resolution Mass Spectrometry
journal, September 2018


From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter
journal, December 2015

  • Koch, B. P.; Dittmar, T.
  • Rapid Communications in Mass Spectrometry, Vol. 30, Issue 1
  • DOI: 10.1002/rcm.7433

The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter
journal, January 2007

  • Sleighter, Rachel L.; Hatcher, Patrick G.
  • Journal of Mass Spectrometry, Vol. 42, Issue 5
  • DOI: 10.1002/jms.1221

Electrospray ionization for mass spectrometry of large biomolecules
journal, October 1989


Fragmentation Studies of Fulvic Acids Using Collision Induced Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, April 2009

  • Witt, Matthias; Fuchser, Jens; Koch, Boris P.
  • Analytical Chemistry, Vol. 81, Issue 7
  • DOI: 10.1021/ac802624s

Evaluation of the Orbitrap Mass Spectrometer for the Molecular Fingerprinting Analysis of Natural Dissolved Organic Matter
journal, July 2016


21 Tesla FT-ICR Mass Spectrometer for Ultrahigh-Resolution Analysis of Complex Organic Mixtures
journal, January 2018


The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter
journal, March 2002


Molecular Structure Characterization of Riverine and Coastal Dissolved Organic Matter with Ion Mobility Quadrupole Time-of-Flight LCMS (IM Q-TOF LCMS)
journal, June 2018

  • Lu, Kaijun; Gardner, Wayne S.; Liu, Zhanfei
  • Environmental Science & Technology, Vol. 52, Issue 13
  • DOI: 10.1021/acs.est.8b00999

A molecular perspective on the ageing of marine dissolved organic matter
journal, January 2012


Natural Organic Matter and the Event Horizon of Mass Spectrometry
journal, December 2008

  • Hertkorn, N.; Frommberger, M.; Witt, M.
  • Analytical Chemistry, Vol. 80, Issue 23
  • DOI: 10.1021/ac800464g

Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry
journal, January 2016

  • Mangal, Vaughn; Stock, Naomi L.; Guéguen, Celine
  • Analytical and Bioanalytical Chemistry, Vol. 408, Issue 7
  • DOI: 10.1007/s00216-015-9295-9

Mobilization of aged and biolabile soil carbon by tropical deforestation
journal, June 2019


Erratum: Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization
journal, June 2010

  • D'Andrilli, Juliana; Dittmar, Thorsten; Koch, Boris P.
  • Rapid Communications in Mass Spectrometry, Vol. 24, Issue 13
  • DOI: 10.1002/rcm.4602

Understanding molecular formula assignment of Fourier transform ion cyclotron resonance mass spectrometry data of natural organic matter from a chemical point of view
journal, October 2014

  • Herzsprung, Peter; Hertkorn, Norbert; von Tümpling, Wolf
  • Analytical and Bioanalytical Chemistry, Vol. 406, Issue 30
  • DOI: 10.1007/s00216-014-8249-y

Origin-specific molecular signatures of dissolved organic matter in the Lena Delta
journal, November 2014


Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean
journal, February 2014

  • Lechtenfeld, Oliver J.; Kattner, Gerhard; Flerus, Ruth
  • Geochimica et Cosmochimica Acta, Vol. 126
  • DOI: 10.1016/j.gca.2013.11.009

Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution
journal, December 1993

  • Tang, Liang.; Kebarle, Paul.
  • Analytical Chemistry, Vol. 65, Issue 24
  • DOI: 10.1021/ac00072a020

Ionization and Fragmentation of Humic Substances in Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry
journal, September 2002

  • Stenson, Alexandra C.; Landing, William M.; Marshall, Alan G.
  • Analytical Chemistry, Vol. 74, Issue 17
  • DOI: 10.1021/ac020019f

Fragmentation Studies of Fulvic Acids Using Collision Induced Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, April 2009

  • Witt, Matthias; Fuchser, Jens; Koch, Boris P.
  • Analytical Chemistry, Vol. 81, Issue 7
  • DOI: 10.1021/ac802624s

High-Field FTICR-MS Data Evaluation of Natural Organic Matter: Are CHON 5 S 2 Molecular Class Formulas Assigned to 13 C Isotopic m / z and in Reality CHO Components?
journal, September 2015


Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems
journal, February 2018

  • Kellerman, Anne M.; Guillemette, François; Podgorski, David C.
  • Environmental Science & Technology, Vol. 52, Issue 5
  • DOI: 10.1021/acs.est.7b05513

Molecular and Structural Characterization of Dissolved Organic Matter from the Deep Ocean by FTICR-MS, Including Hydrophilic Nitrogenous Organic Molecules
journal, March 2008

  • Reemtsma, Thorsten; These, Anja; Linscheid, Michael
  • Environmental Science & Technology, Vol. 42, Issue 5
  • DOI: 10.1021/es7021413

Reversed-Phase Chromatography Fractionation Tailored to Mass Spectral Characterization of Humic Substances
journal, March 2008

  • Stenson, Alexandra C.
  • Environmental Science & Technology, Vol. 42, Issue 6
  • DOI: 10.1021/es7022412

Universal molecular structures in natural dissolved organic matter
journal, August 2018


Mobilization of aged and biolabile soil carbon by tropical deforestation
journal, June 2019


Persistence of dissolved organic matter explained by molecular changes during its passage through soil
journal, August 2019


Pushing the analytical limits: new insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power
journal, January 2019

  • Palacio Lozano, Diana Catalina; Gavard, Remy; Arenas-Diaz, Juan P.
  • Chemical Science, Vol. 10, Issue 29
  • DOI: 10.1039/c9sc02903f

Suwannee River Natural Organic Matter: Isolation of the 2R101N Reference Sample by Reverse Osmosis
journal, January 2015

  • Green, Nelson W.; McInnis, Daniel; Hertkorn, Norbert
  • Environmental Engineering Science, Vol. 32, Issue 1
  • DOI: 10.1089/ees.2014.0284

A molecular perspective on the ageing of marine dissolved organic matter
journal, January 2012


Works referencing / citing this record:

Studying the Complexity of Biomass Derived Biofuels
journal, April 2021