DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS

Abstract

Tandem solar cells coupling narrow- and wide-band-gap thin-film polycrystalline absorbers are attractive for achieving ultrahigh efficiency with low manufacturing cost. For established narrow-band-gap CIGS thin-film bottom cells, a challenge is to develop highly efficient polycrystalline wide-band-gap top cells. Here, we demonstrate a 1.68-eV (FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)3 wide-band-gap perovskite solar cell with an efficiency of ~20% enabled by using PEAI and Pb(SCN)2 complementary additives in the perovskite precursor. The coupling of PEA+ and SCN- provides a synergistic effect that overcomes growth challenges with either additive individually and improves perovskite film quality with enhanced crystallinity, reduced formation of excess PbI2 (in comparison to using Pb(SCN)2 additive alone), lower defect density and energetic disorder, and an improved carrier mobility (~47 cm2 V-1s-1) and lifetime (~2.9 us). When coupling a semi-transparent 1.68-eV perovskite top cell fabricated by this approach with a 1.12-eV CIGS bottom cell, we achieve 25.9%-efficient polycrystalline perovskite/CIGS 4-terminal thin-film tandem solar cells.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1638875
Alternate Identifier(s):
OSTI ID: 1545260
Report Number(s):
NREL/JA-5900-74396
Journal ID: ISSN 2542-4351; S2542435119302107; PII: S2542435119302107
Grant/Contract Number:  
N000141812155; -EE00025810; 30296; NRF-2017R1A4A1015022; FOA-0000990; AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Joule
Additional Journal Information:
Journal Name: Joule Journal Volume: 3 Journal Issue: 7; Journal ID: ISSN 2542-4351
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; perovskite solar cells; tandem; CIGS; transport; carrier lifetime; defect density

Citation Formats

Kim, Dong Hoe, Muzzillo, Christopher P., Tong, Jinhui, Palmstrom, Axel F., Larson, Bryon W., Choi, Chungseok, Harvey, Steven P., Glynn, Stephen, Whitaker, James B., Zhang, Fei, Li, Zhen, Lu, Haipeng, van Hest, Maikel F. A. M., Berry, Joseph J., Mansfield, Lorelle M., Huang, Yu, Yan, Yanfa, and Zhu, Kai. Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. United States: N. p., 2019. Web. doi:10.1016/j.joule.2019.04.012.
Kim, Dong Hoe, Muzzillo, Christopher P., Tong, Jinhui, Palmstrom, Axel F., Larson, Bryon W., Choi, Chungseok, Harvey, Steven P., Glynn, Stephen, Whitaker, James B., Zhang, Fei, Li, Zhen, Lu, Haipeng, van Hest, Maikel F. A. M., Berry, Joseph J., Mansfield, Lorelle M., Huang, Yu, Yan, Yanfa, & Zhu, Kai. Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. United States. https://doi.org/10.1016/j.joule.2019.04.012
Kim, Dong Hoe, Muzzillo, Christopher P., Tong, Jinhui, Palmstrom, Axel F., Larson, Bryon W., Choi, Chungseok, Harvey, Steven P., Glynn, Stephen, Whitaker, James B., Zhang, Fei, Li, Zhen, Lu, Haipeng, van Hest, Maikel F. A. M., Berry, Joseph J., Mansfield, Lorelle M., Huang, Yu, Yan, Yanfa, and Zhu, Kai. Mon . "Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS". United States. https://doi.org/10.1016/j.joule.2019.04.012.
@article{osti_1638875,
title = {Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS},
author = {Kim, Dong Hoe and Muzzillo, Christopher P. and Tong, Jinhui and Palmstrom, Axel F. and Larson, Bryon W. and Choi, Chungseok and Harvey, Steven P. and Glynn, Stephen and Whitaker, James B. and Zhang, Fei and Li, Zhen and Lu, Haipeng and van Hest, Maikel F. A. M. and Berry, Joseph J. and Mansfield, Lorelle M. and Huang, Yu and Yan, Yanfa and Zhu, Kai},
abstractNote = {Tandem solar cells coupling narrow- and wide-band-gap thin-film polycrystalline absorbers are attractive for achieving ultrahigh efficiency with low manufacturing cost. For established narrow-band-gap CIGS thin-film bottom cells, a challenge is to develop highly efficient polycrystalline wide-band-gap top cells. Here, we demonstrate a 1.68-eV (FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)3 wide-band-gap perovskite solar cell with an efficiency of ~20% enabled by using PEAI and Pb(SCN)2 complementary additives in the perovskite precursor. The coupling of PEA+ and SCN- provides a synergistic effect that overcomes growth challenges with either additive individually and improves perovskite film quality with enhanced crystallinity, reduced formation of excess PbI2 (in comparison to using Pb(SCN)2 additive alone), lower defect density and energetic disorder, and an improved carrier mobility (~47 cm2 V-1s-1) and lifetime (~2.9 us). When coupling a semi-transparent 1.68-eV perovskite top cell fabricated by this approach with a 1.12-eV CIGS bottom cell, we achieve 25.9%-efficient polycrystalline perovskite/CIGS 4-terminal thin-film tandem solar cells.},
doi = {10.1016/j.joule.2019.04.012},
journal = {Joule},
number = 7,
volume = 3,
place = {United States},
year = {Mon Jul 01 00:00:00 EDT 2019},
month = {Mon Jul 01 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.joule.2019.04.012

Citation Metrics:
Cited by: 154 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mixed Cation Thiocyanate-Based Pseudohalide Perovskite Solar Cells with High Efficiency and Stability
journal, January 2017

  • Chiang, Yu-Hsien; Li, Ming-Hsien; Cheng, Hsin-Min
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 3
  • DOI: 10.1021/acsami.6b13206

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

Mixed Cation FA x PEA 1- x PbI 3 with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells
journal, September 2016

  • Li, Nan; Zhu, Zonglong; Chueh, Chu-Chen
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601307

Essentially Trap-Free CsPbBr 3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment
journal, May 2017

  • Koscher, Brent A.; Swabeck, Joseph K.; Bronstein, Noah D.
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b02817

300% Enhancement of Carrier Mobility in Uniaxial-Oriented Perovskite Films Formed by Topotactic-Oriented Attachment
journal, April 2017


Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
journal, July 2018


23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells
journal, April 2017


Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics
journal, January 2015

  • Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC03141E

Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells
journal, February 2018


Ligand-Stabilized Reduced-Dimensionality Perovskites
journal, February 2016

  • Quan, Li Na; Yuan, Mingjian; Comin, Riccardo
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b11740

Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH 3 NH 3 PbI 2 Br Nanosheets via Thermal Decomposition
journal, August 2014

  • Zhao, Yixin; Zhu, Kai
  • Journal of the American Chemical Society, Vol. 136, Issue 35
  • DOI: 10.1021/ja5071398

Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications
journal, May 2017

  • Jeon, Taewoo; Kim, Sung Jin; Yoon, Jisun
  • Advanced Energy Materials, Vol. 7, Issue 19
  • DOI: 10.1002/aenm.201602596

Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites
journal, August 2017


Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
journal, March 2018

  • Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania
  • Nature, Vol. 555, Issue 7697
  • DOI: 10.1038/nature25989

Quantitative analysis of time-resolved microwave conductivity data
journal, November 2017

  • Reid, Obadiah G.; Moore, David T.; Li, Zhen
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 49
  • DOI: 10.1088/1361-6463/aa9559

Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability
journal, January 2018

  • Zhu, Xuejie; Xu, Zhuo; Zuo, Shengnan
  • Energy & Environmental Science, Vol. 11, Issue 12
  • DOI: 10.1039/C8EE02284D

Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells
journal, June 2014

  • Chen, Qi; Zhou, Huanping; Song, Tze-Bin
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501838y

Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors
journal, April 2016

  • Stoumpos, Constantinos C.; Cao, Duyen H.; Clark, Daniel J.
  • Chemistry of Materials, Vol. 28, Issue 8, p. 2852-2867
  • DOI: 10.1021/acs.chemmater.6b00847

Selecting tandem partners for silicon solar cells
journal, September 2016


Performance Evaluation of Semitransparent Perovskite Solar Cells for Application in Four-Terminal Tandem Cells
journal, July 2018


Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation
journal, January 2018


Low-Temperature Fabrication of Efficient Wide-Bandgap Organolead Trihalide Perovskite Solar Cells
journal, November 2014

  • Bi, Cheng; Yuan, Yongbo; Fang, Yanjun
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401616

Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity
journal, January 2018

  • Shen, Heping; Duong, The; Peng, Jun
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE02627G

Semi-transparent perovskite solar cells for tandems with silicon and CIGS
journal, January 2015

  • Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03322A

High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells
journal, July 2016

  • Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe
  • Nature, Vol. 536, Issue 7616
  • DOI: 10.1038/nature18306

Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S) 2 Four Terminal Tandem Solar Cells
journal, June 2015


2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications
journal, June 2015

  • Cao, Duyen H.; Stoumpos, Constantinos C.; Farha, Omar K.
  • Journal of the American Chemical Society, Vol. 137, Issue 24
  • DOI: 10.1021/jacs.5b03796

2D perovskite stabilized phase-pure formamidinium perovskite solar cells
journal, August 2018


Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells
journal, May 2016

  • Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
  • Advanced Materials, Vol. 28, Issue 26
  • DOI: 10.1002/adma.201600594

One-Year stable perovskite solar cells by 2D/3D interface engineering
journal, June 2017

  • Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15684

Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
journal, February 2014

  • Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
  • Applied Physics Letters, Vol. 104, Issue 6
  • DOI: 10.1063/1.4864778

Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%
journal, January 2017

  • Paetzold, U. W.; Jaysankar, M.; Gehlhaar, R.
  • Journal of Materials Chemistry A, Vol. 5, Issue 20
  • DOI: 10.1039/C7TA01651D

Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology
journal, October 2017


Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
journal, May 2017


Monolithic Perovskite-CIGS Tandem Solar Cells via In Situ Band Gap Engineering
journal, September 2015

  • Todorov, Teodor; Gershon, Talia; Gunawan, Oki
  • Advanced Energy Materials, Vol. 5, Issue 23
  • DOI: 10.1002/aenm.201500799

Synthesis, Single-Crystal Structure and Characterization of (CH 3 NH 3 ) 2 Pb(SCN) 2 I 2
journal, September 2015

  • Daub, Michael; Hillebrecht, Harald
  • Angewandte Chemie International Edition, Vol. 54, Issue 38
  • DOI: 10.1002/anie.201506449

Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells
journal, January 2016


Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices
journal, July 2018

  • Harvey, Steven P.; Li, Zhen; Christians, Jeffrey A.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 34
  • DOI: 10.1021/acsami.8b07937

Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites
journal, September 2014

  • Noel, Nakita K.; Abate, Antonio; Stranks, Samuel D.
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn5036476

Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
journal, June 2018


Characterization of the Valence and Conduction Band Levels of n = 1 2D Perovskites: A Combined Experimental and Theoretical Investigation
journal, February 2018


Solar cell efficiency tables (version 52)
journal, June 2018

  • Green, Martin A.; Hishikawa, Yoshihiro; Dunlop, Ewan D.
  • Progress in Photovoltaics: Research and Applications, Vol. 26, Issue 7
  • DOI: 10.1002/pip.3040

Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying
journal, May 2018


Over 20% Efficient CIGS–Perovskite Tandem Solar Cells
journal, March 2017


Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution
journal, November 2016


Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering
journal, January 2018

  • Son, Dae-Yong; Kim, Seul-Gi; Seo, Ja-Young
  • Journal of the American Chemical Society, Vol. 140, Issue 4
  • DOI: 10.1021/jacs.7b10430

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Optically induced metastability in Cu(In,Ga)Se2
journal, October 2017


Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Solution-Processed Low-Bandgap CuIn(S,Se) 2 Absorbers for High-Efficiency Single-Junction and Monolithic Chalcopyrite-Perovskite Tandem Solar Cells
journal, August 2018

  • Uhl, Alexander R.; Rajagopal, Adharsh; Clark, James A.
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201801254

Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation
journal, June 2016


High-performance perovskite/Cu(In,Ga)Se 2 monolithic tandem solar cells
journal, August 2018


High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration
journal, December 2016


Beneficial Effects of PbI 2 Incorporated in Organo-Lead Halide Perovskite Solar Cells
journal, December 2015

  • Kim, Young Chan; Jeon, Nam Joong; Noh, Jun Hong
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201502104

Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se2 solar cells through reduced potential fluctuations
journal, August 2016

  • Jensen, S. A.; Glynn, S.; Kanevce, A.
  • Journal of Applied Physics, Vol. 120, Issue 6
  • DOI: 10.1063/1.4960344

Works referencing / citing this record:

27%‐Efficiency Four‐Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh
journal, November 2019

  • Wang, Ziyu; Zhu, Xuejie; Zuo, Shengnan
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201908298

Dual Passivation of Perovskite Defects for Light‐Emitting Diodes with External Quantum Efficiency Exceeding 20%
journal, February 2020

  • Fang, Zhibin; Chen, Wenjing; Shi, Yongliang
  • Advanced Functional Materials, Vol. 30, Issue 12
  • DOI: 10.1002/adfm.201909754

Efficiency Improvement of Near‐Stoichiometric CuInSe 2 Solar Cells for Application in Tandem Devices
journal, July 2019

  • Feurer, Thomas; Carron, Romain; Torres Sevilla, Galo
  • Advanced Energy Materials, Vol. 9, Issue 35
  • DOI: 10.1002/aenm.201901428

Additive Engineering for Efficient and Stable Perovskite Solar Cells
journal, October 2019


Atomic Layer Deposition of Functional Layers in Planar Perovskite Solar Cells
journal, October 2019

  • Brinkmann, Kai Oliver; Gahlmann, Tobias; Riedl, Thomas
  • Solar RRL, Vol. 4, Issue 1
  • DOI: 10.1002/solr.201900332

Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems
journal, March 2020


A Review on Improving the Quality of Perovskite Films in Perovskite Solar Cells via the Weak Forces Induced by Additives
journal, October 2019

  • Yang, Jien; Chen, Songhua; Xu, Jinjin
  • Applied Sciences, Vol. 9, Issue 20
  • DOI: 10.3390/app9204393