DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exciting H2 Molecules for Graphene Functionalization

Abstract

Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H–H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.

Authors:
 [1];  [2];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [2];  [1];  [3];  [3]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5];  [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Aarhus Univ. (Denmark)
  2. Aix-Marseille Univ., Marseille (France)
  3. Lund Univ. (Sweden)
  4. Elettra-Sincrotrone, Trieste (Italy)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) and Chemical Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; Danish Council for Independent Research; Innovation Fund Denmark; European Research Council (ERC); Villum Foundation
OSTI Identifier:
1638185
Grant/Contract Number:  
AC02-05CH11231; 0602-02566B; 0602-02265B; 11744
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; graphene; vibrational excitation; nanostructured functionalization; band gap engineering; molecular hydrogen; catalysis

Citation Formats

Kyhl, Line, Bisson, Régis, Balog, Richard, Groves, Michael N., Kolsbjerg, Esben Leonhard, Cassidy, Andrew Martin, Jørgensen, Jakob Holm, Halkjær, Susanne, Miwa, Jill A., Grubišić Čabo, Antonija, Angot, Thierry, Hofmann, Philip, Arman, Mohammad Alif, Urpelainen, Samuli, Lacovig, Paolo, Bignardi, Luca, Bluhm, Hendrik, Knudsen, Jan, Hammer, Bjørk, and Hornekaer, Liv. Exciting H2 Molecules for Graphene Functionalization. United States: N. p., 2017. Web. doi:10.1021/acsnano.7b07079.
Kyhl, Line, Bisson, Régis, Balog, Richard, Groves, Michael N., Kolsbjerg, Esben Leonhard, Cassidy, Andrew Martin, Jørgensen, Jakob Holm, Halkjær, Susanne, Miwa, Jill A., Grubišić Čabo, Antonija, Angot, Thierry, Hofmann, Philip, Arman, Mohammad Alif, Urpelainen, Samuli, Lacovig, Paolo, Bignardi, Luca, Bluhm, Hendrik, Knudsen, Jan, Hammer, Bjørk, & Hornekaer, Liv. Exciting H2 Molecules for Graphene Functionalization. United States. https://doi.org/10.1021/acsnano.7b07079
Kyhl, Line, Bisson, Régis, Balog, Richard, Groves, Michael N., Kolsbjerg, Esben Leonhard, Cassidy, Andrew Martin, Jørgensen, Jakob Holm, Halkjær, Susanne, Miwa, Jill A., Grubišić Čabo, Antonija, Angot, Thierry, Hofmann, Philip, Arman, Mohammad Alif, Urpelainen, Samuli, Lacovig, Paolo, Bignardi, Luca, Bluhm, Hendrik, Knudsen, Jan, Hammer, Bjørk, and Hornekaer, Liv. Mon . "Exciting H2 Molecules for Graphene Functionalization". United States. https://doi.org/10.1021/acsnano.7b07079. https://www.osti.gov/servlets/purl/1638185.
@article{osti_1638185,
title = {Exciting H2 Molecules for Graphene Functionalization},
author = {Kyhl, Line and Bisson, Régis and Balog, Richard and Groves, Michael N. and Kolsbjerg, Esben Leonhard and Cassidy, Andrew Martin and Jørgensen, Jakob Holm and Halkjær, Susanne and Miwa, Jill A. and Grubišić Čabo, Antonija and Angot, Thierry and Hofmann, Philip and Arman, Mohammad Alif and Urpelainen, Samuli and Lacovig, Paolo and Bignardi, Luca and Bluhm, Hendrik and Knudsen, Jan and Hammer, Bjørk and Hornekaer, Liv},
abstractNote = {Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H–H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.},
doi = {10.1021/acsnano.7b07079},
journal = {ACS Nano},
number = 1,
volume = 12,
place = {United States},
year = {Mon Dec 18 00:00:00 EST 2017},
month = {Mon Dec 18 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a−d) STM images of gr/Ir(111) exposed to vibrationally excited H2 or D2: (a) H2 with method (i) at P = 2 x 10−5 mbar for 32 min. (b) D2 with method (ii) at P = 5 x 10−7 mbar for 20 min, TW > 2000 K. Features ofmore » types I and II are indicated with circles. The rhombus outlines a moiré unit cell, the “*” and the “+” denote the FCC and HCP areas, respectively, and the corners of the rhombus mark the atop regions. (c) D2 with method (ii) at P = 5 x 10−7 mbar for 60 min, TW > 2000 K. A type III feature is outlined. (d) D2 with method (ii) at P = 5 x 10−7 mbar for 60 min, TW > 2000 K. (e) Time evolution of hydrogenation structures during exposure to vibrationally excited H2, using method (i), at P = 1 x 10−5 mbar. Red dots: Total number of nucleation sites, normalized to the imaged area, plotted against time. Error bars represent the intrinsic error assuming a Poisson distribution. Blue triangles: Apparent hydrogenated area, in % of total image area, plotted against time. (f) A line profile through the Fourier transform shown in the inset, along the line indicated. The Fourier transform is performed on a larger scale STM image (see Supporting Information, S2) in the same area as shown in the STM image in (d). The Fourier transform illustrates a high degree of order on the surface after the exposure to vibrationally excited H2. The separation of the peaks indicated by arrows in the line profile corresponds to a real space separation of ∼21.5 Å which equals ∼25 Å x cos(30°), confirming a global hydrogen-induced patterning with moiré superlattice periodicity. Imaging parameters for (a−d): (a) Vt = 478.2 mV, It = 0.790 nA. (b) Vt = 67.1 mV, It = 1.090 nA. (c) Vt= −351.9 mV, It = −0.310 nA. (d) Vt = −351.9 mV, It = −0.320 nA.« less

Save / Share:

Works referenced in this record:

Atomic-scale control of graphene magnetism by using hydrogen atoms
journal, April 2016

  • Gonzalez-Herrero, H.; Gomez-Rodriguez, J. M.; Mallet, P.
  • Science, Vol. 352, Issue 6284
  • DOI: 10.1126/science.aad8038

Symmetry-Driven Band Gap Engineering in Hydrogen Functionalized Graphene
journal, November 2016

  • Jørgensen, Jakob Holm; Čabo, Antonija Grubišić; Balog, Richard
  • ACS Nano, Vol. 10, Issue 12
  • DOI: 10.1021/acsnano.6b04671

Bandgap opening in graphene induced by patterned hydrogen adsorption
journal, March 2010

  • Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis
  • Nature Materials, Vol. 9, Issue 4
  • DOI: 10.1038/nmat2710

Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
journal, January 2009


Prospects for hydrogen storage in graphene
journal, January 2013

  • Tozzini, Valentina; Pellegrini, Vittorio
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 1
  • DOI: 10.1039/C2CP42538F

Hydrogen Storage in Rippled Graphene: Perspectives from Multi-Scale Simulations
journal, January 2015

  • Camiola, Vito Dario; Farchioni, Riccardo; Cavallucci, Tommaso
  • Frontiers in Materials, Vol. 2
  • DOI: 10.3389/fmats.2015.00003

Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers
journal, December 2016

  • Trotochaud, Lena; Head, Ashley R.; Karslıoğlu, Osman
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 5
  • DOI: 10.1088/1361-648X/29/5/053002

Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface
journal, April 2006


Atomic Hydrogen Adsorbate Structures on Graphene
journal, July 2009

  • Balog, Richard; Jørgensen, Bjarke; Wells, Justin
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja902714h

Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum
journal, March 2016


Controlling Hydrogenation of Graphene on Ir(111)
journal, April 2013

  • Balog, Richard; Andersen, Mie; Jørgensen, Bjarke
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn400780x

Is there <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">sp</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>-bound H on epitaxial graphene? Evidence for adsorption on both sides of the sheet
journal, September 2012


The stretching vibration of hydrogen adsorbed on epitaxial graphene studied by sum-frequency generation spectroscopy
journal, May 2011


Thickness-Dependent Reversible Hydrogenation of Graphene Layers
journal, June 2009

  • Luo, Zhiqiang; Yu, Ting; Kim, Ki-jeong
  • ACS Nano, Vol. 3, Issue 7
  • DOI: 10.1021/nn900371t

Reversible Hydrogenation of Graphene on Ni(111)-Synthesis of “Graphone”
journal, January 2015

  • Zhao, Wei; Gebhardt, Julian; Späth, Florian
  • Chemistry - A European Journal, Vol. 21, Issue 8
  • DOI: 10.1002/chem.201404938

Growth of graphene on Ir(111)
journal, February 2009


Structure of epitaxial graphene on Ir(111)
journal, April 2008


N-type graphene induced by dissociative H2 adsorption at room temperature
journal, September 2012

  • Kim, Byung Hoon; Hong, Sung Ju; Baek, Seung Jae
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00690

Hydrogenation of Graphene by Reaction at High Pressure and High Temperature
journal, July 2015


Direct measurement of the amount of dissociated hydrogen atoms attached on graphene
journal, February 2015


First principles studies for the dissociative adsorption of H2 on graphene
journal, March 2003

  • Miura, Y.; Kasai, H.; Diño, W.
  • Journal of Applied Physics, Vol. 93, Issue 6
  • DOI: 10.1063/1.1555701

Hydrogen on graphene under stress: Molecular dissociation and gap opening
journal, February 2010


Effects of hydroxyl group on H2 dissociation on graphene: A density functional theory study
journal, May 2013


Dissociative adsorption of H2 molecules on steric graphene surface: Ab initio MD study based on DFT
journal, August 2012


Electric Field Activated Hydrogen Dissociative Adsorption to Nitrogen-Doped Graphene
journal, August 2010

  • Ao, Z. M.; Peeters, F. M.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 34
  • DOI: 10.1021/jp103835k

Electric field: A catalyst for hydrogenation of graphene
journal, June 2010

  • Ao, Z. M.; Peeters, F. M.
  • Applied Physics Letters, Vol. 96, Issue 25
  • DOI: 10.1063/1.3456384

Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface
journal, December 2006


H2 Dissociative Adsorption at the Zigzag Edges of Graphite
journal, January 2004

  • Diño, Wilson Agerico; Nakanishi, Hiroshi; Kasai, Hideaki
  • e-Journal of Surface Science and Nanotechnology, Vol. 2
  • DOI: 10.1380/ejssnt.2004.77

Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism
journal, January 2014

  • P., Divya; Ramaprabhu, S.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 48
  • DOI: 10.1039/C4CP04214J

Investigation of Spillover Mechanism in Palladium Decorated Hydrogen Exfoliated Functionalized Graphene
journal, July 2011

  • Parambhath, Vinayan Bhagavathi; Nagar, Rupali; Sethupathi, K.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 31
  • DOI: 10.1021/jp202797q

Hydrogen spillover storage on Ca-decorated graphene
journal, August 2012


Is Spillover Relevant for Hydrogen Adsorption and Storage in Porous Carbons Doped with Palladium Nanoparticles?
journal, July 2016

  • Blanco-Rey, María; Juaristi, J. Iñaki; Alducin, Maite
  • The Journal of Physical Chemistry C, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpcc.6b04006

Reversible Hydrogen Storage by Controlled Buckling of Graphene Layers
journal, December 2011

  • Tozzini, Valentina; Pellegrini, Vittorio
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp208262r

Influence of Graphene Curvature on Hydrogen Adsorption: Toward Hydrogen Storage Devices
journal, May 2013

  • Goler, Sarah; Coletti, Camilla; Tozzini, Valentina
  • The Journal of Physical Chemistry C, Vol. 117, Issue 22
  • DOI: 10.1021/jp4017536

Vibrational Excitation of Hydrogen via Recombinative Desorption of Atomic Hydrogen Gas on a Metal Surface
journal, January 1988


Observation of Exceptionally High Vibrational Excitation of Hydrogen Molecules Formed by Wall Recombination
journal, January 1988


A versatile fabrication method for cluster superlattices
journal, October 2009


Intensity of a source of atomic hydrogen based on a hot capillary
journal, March 2000

  • Tschersich, K. G.
  • Journal of Applied Physics, Vol. 87, Issue 5
  • DOI: 10.1063/1.372220

Raman Chirped Adiabatic Passage: a New Method for Selective Excitation of High Vibrational States
journal, June 1997


A fully automated, ‘thimble-size’ scanning tunnelling microscope
journal, December 1988


A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach
journal, April 2016


The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab
journal, August 2012

  • Schnadt, Joachim; Knudsen, Jan; Andersen, Jesper N.
  • Journal of Synchrotron Radiation, Vol. 19, Issue 5
  • DOI: 10.1107/S0909049512032700

Real-space grid implementation of the projector augmented wave method
journal, January 2005


Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method
journal, June 2010


The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

A critical assessment of theoretical methods for finding reaction pathways and transition states of surface processes
journal, February 2010

  • Klimeš, Jiří; Bowler, David R.; Michaelides, Angelos
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 7
  • DOI: 10.1088/0953-8984/22/7/074203

Van der Waals Density Functional for General Geometries
journal, June 2004


Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
journal, January 2006

  • Jurečka, Petr; Šponer, Jiří; Černý, Jiří
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 17, p. 1985-1993
  • DOI: 10.1039/B600027D

An automated nudged elastic band method
journal, September 2016

  • Kolsbjerg, Esben L.; Groves, Michael N.; Hammer, Bjørk
  • The Journal of Chemical Physics, Vol. 145, Issue 9
  • DOI: 10.1063/1.4961868

Works referencing / citing this record:

Functionalized Graphene-Based Materials as Innovative Adsorbents of Organic Pollutants: a Concise Overview
journal, March 2019


Characterization of Pt- or Pd-doped graphene based on density functional theory for H 2 gas sensor
journal, July 2019


Hydrogen interaction with graphene on Ir(1 1 1): a combined intercalation and functionalization study
journal, January 2019

  • Balog, Richard; Cassidy, Andrew; Jørgensen, Jakob
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 8
  • DOI: 10.1088/1361-648x/aaf76b

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.