DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches

Abstract

Determining the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces, since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach. In this work, we employ extensive AIMD simulations to benchmark solvation at charge-neutral metal/water interfaces against commonly applied continuum solvent models. We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, *OH, and *OOH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates considered are relevant, among other reactions, to electrochemical CO2 reduction and the oxygen redox reactions. We determine directional hydrogen bonds and steric water competition to be critical for a correct description of solvation at the metal/water interfaces. As a consequence, we find that the most frequently applied continuum solvation methods, which do not yet capture these properties, do not presently provide more accurate energetics over simulations in vacuum. We find most of the computed benchmark solvation energies to linearly scale with hydrogen bonding or competitive water adsorption, which strongly differ across surfaces. Furthermore, wemore » determine solvation energies of adsorbates to be non-transferable between metal surfaces, in contrast to standard practice.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Technical Univ. of Denmark, Lyngby (Denmark)
  2. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1633615
Grant/Contract Number:  
AC02-76SF00515; SC0004993; FG02-97ER25308; 9455
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 152; Journal Issue: 14; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Ab-initio molecular dynamics; surface and interface chemistry; electrochemical reactions; implicit solvation

Citation Formats

Heenen, Hendrik H., Gauthier, Joseph A., Kristoffersen, Henrik H., Ludwig, Thomas, and Chan, Karen. Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches. United States: N. p., 2020. Web. doi:10.1063/1.5144912.
Heenen, Hendrik H., Gauthier, Joseph A., Kristoffersen, Henrik H., Ludwig, Thomas, & Chan, Karen. Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches. United States. https://doi.org/10.1063/1.5144912
Heenen, Hendrik H., Gauthier, Joseph A., Kristoffersen, Henrik H., Ludwig, Thomas, and Chan, Karen. Thu . "Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches". United States. https://doi.org/10.1063/1.5144912. https://www.osti.gov/servlets/purl/1633615.
@article{osti_1633615,
title = {Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches},
author = {Heenen, Hendrik H. and Gauthier, Joseph A. and Kristoffersen, Henrik H. and Ludwig, Thomas and Chan, Karen},
abstractNote = {Determining the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces, since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach. In this work, we employ extensive AIMD simulations to benchmark solvation at charge-neutral metal/water interfaces against commonly applied continuum solvent models. We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, *OH, and *OOH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates considered are relevant, among other reactions, to electrochemical CO2 reduction and the oxygen redox reactions. We determine directional hydrogen bonds and steric water competition to be critical for a correct description of solvation at the metal/water interfaces. As a consequence, we find that the most frequently applied continuum solvation methods, which do not yet capture these properties, do not presently provide more accurate energetics over simulations in vacuum. We find most of the computed benchmark solvation energies to linearly scale with hydrogen bonding or competitive water adsorption, which strongly differ across surfaces. Furthermore, we determine solvation energies of adsorbates to be non-transferable between metal surfaces, in contrast to standard practice.},
doi = {10.1063/1.5144912},
journal = {Journal of Chemical Physics},
number = 14,
volume = 152,
place = {United States},
year = {Thu Apr 09 00:00:00 EDT 2020},
month = {Thu Apr 09 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 86 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Practical Considerations for Continuum Models Applied to Surface Electrochemistry
journal, May 2019

  • Gauthier, Joseph A.; Dickens, Colin F.; Ringe, Stefan
  • ChemPhysChem, Vol. 20, Issue 22
  • DOI: 10.1002/cphc.201900536

Dispersive interactions in water bilayers at metallic surfaces: A comparison of the PBE and RPBE functional including semiempirical dispersion corrections
journal, January 2012

  • Tonigold, Katrin; Groß, Axel
  • Journal of Computational Chemistry, Vol. 33, Issue 6
  • DOI: 10.1002/jcc.22900

Water Structures at Metal Electrodes Studied by Ab Initio Molecular Dynamics Simulations
journal, January 2014

  • Groß, Axel; Gossenberger, Florian; Lin, Xiaohang
  • Journal of The Electrochemical Society, Vol. 161, Issue 8
  • DOI: 10.1149/2.003408jes

Challenges in the first-principles description of reactions in electrocatalysis
journal, May 2011


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Grand canonical simulations of electrochemical interfaces in implicit solvation models
journal, January 2019

  • Hörmann, Nicolas G.; Andreussi, Oliviero; Marzari, Nicola
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5054580

Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: Neutral solutes in aqueous monovalent salt solutions
journal, April 2017

  • Ringe, Stefan; Oberhofer, Harald; Reuter, Karsten
  • The Journal of Chemical Physics, Vol. 146, Issue 13
  • DOI: 10.1063/1.4978850

Catechol and HCl Adsorption on TiO 2 (110) in Vacuum and at the Water–TiO 2 Interface
journal, June 2015

  • Kristoffersen, Henrik H.; Shea, Joan-Emma; Metiu, Horia
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00958

Modeling the electrified solid–liquid interface
journal, November 2008


Error estimates on averages of correlated data
journal, July 1989

  • Flyvbjerg, H.; Petersen, H. G.
  • The Journal of Chemical Physics, Vol. 91, Issue 1
  • DOI: 10.1063/1.457480

Continuum models of the electrochemical diffuse layer in electronic-structure calculations
journal, January 2019

  • Nattino, Francesco; Truscott, Matthew; Marzari, Nicola
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5054588

The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model
journal, February 2015

  • Sundararaman, Ravishankar; Goddard, William A.
  • The Journal of Chemical Physics, Vol. 142, Issue 6
  • DOI: 10.1063/1.4907731

Graph Theory Approach to High-Throughput Surface Adsorption Structure Generation
journal, February 2019

  • Boes, Jacob R.; Mamun, Osman; Winther, Kirsten
  • The Journal of Physical Chemistry A, Vol. 123, Issue 11
  • DOI: 10.1021/acs.jpca.9b00311

Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO 2 (110)
journal, May 2017

  • Gauthier, Joseph A.; Dickens, Colin F.; Chen, Leanne D.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 21
  • DOI: 10.1021/acs.jpcc.7b02383

Constant Temperature Molecular Dynamics Methods
journal, January 1991

  • Nosé, Shuichi
  • Progress of Theoretical Physics Supplement, Vol. 103
  • DOI: 10.1143/ptps.103.1

Implicit self-consistent electrolyte model in plane-wave density-functional theory
journal, December 2019

  • Mathew, Kiran; Kolluru, V. S. Chaitanya; Mula, Srinidhi
  • The Journal of Chemical Physics, Vol. 151, Issue 23
  • DOI: 10.1063/1.5132354

Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement
journal, February 2017

  • Sundararaman, Ravishankar; Schwarz, Kathleen
  • The Journal of Chemical Physics, Vol. 146, Issue 8
  • DOI: 10.1063/1.4976971

Molecular-Level Details about Liquid H 2 O Interactions with CO and Sugar Alcohol Adsorbates on Pt(111) Calculated Using Density Functional Theory and Molecular Dynamics
journal, June 2015

  • Bodenschatz, Cameron J.; Sarupria, Sapna; Getman, Rachel B.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 24
  • DOI: 10.1021/acs.jpcc.5b02333

First-Principles Calculations of the Electrochemical Reactions of Water at an Immersed Ni(111)∕H[sub 2]O Interface
journal, January 2006

  • Taylor, Christopher; Kelly, Robert G.; Neurock, Matthew
  • Journal of The Electrochemical Society, Vol. 153, Issue 12
  • DOI: 10.1149/1.2357721

The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations
journal, November 2010


Self-diffusion in normal and heavy water in the range 1-45.deg.
journal, March 1973


A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Absolute band alignment at semiconductor-water interfaces using explicit and implicit descriptions for liquid water
journal, October 2019

  • Hörmann, Nicolas G.; Guo, Zhendong; Ambrosio, Francesco
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0238-4

Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials
journal, January 2019

  • Melander, Marko M.; Kuisma, Mikael J.; Christensen, Thorbjørn Erik Køppen
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5047829

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids
journal, September 1972

  • Chandler, David; Andersen, Hans C.
  • The Journal of Chemical Physics, Vol. 57, Issue 5
  • DOI: 10.1063/1.1678513

Structure and Dynamics of Liquid Water from ab Initio Molecular Dynamics—Comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals Corrections
journal, March 2012

  • Lin, I-Chun; Seitsonen, Ari P.; Tavernelli, Ivano
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 10
  • DOI: 10.1021/ct3001848

Combining Experiment and Theory To Unravel the Mechanism of Two-Electron Oxygen Reduction at a Selective and Active Co-catalyst
journal, October 2018


Controlled-Potential Simulation of Elementary Electrochemical Reactions: Proton Discharge on Metal Surfaces
journal, May 2018

  • Kastlunger, Georg; Lindgren, Per; Peterson, Andrew A.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 24
  • DOI: 10.1021/acs.jpcc.8b02465

OH formation and H 2 adsorption at the liquid water–Pt(111) interface
journal, January 2018

  • Kristoffersen, Henrik H.; Vegge, Tejs; Hansen, Heine Anton
  • Chemical Science, Vol. 9, Issue 34
  • DOI: 10.1039/c8sc02495b

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Fundamental Concepts in Heterogeneous Catalysis
book, January 2014

  • Nørskov, Jens K.; Studt, Felix; Abild-Pedersen, Frank
  • John Wiley & Sons, Inc.
  • DOI: 10.1002/9781118892114

Solvent–Adsorbate Interactions and Adsorbate-Specific Solvent Structure in Carbon Dioxide Reduction on a Stepped Cu Surface
journal, February 2019

  • Ludwig, Thomas; Gauthier, Joseph A.; Brown, Kristopher S.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 10
  • DOI: 10.1021/acs.jpcc.8b11571

The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648x/aa680e

Enthalpy−Entropy and Cavity Decomposition of Alkane Hydration Free Energies:  Numerical Results and Implications for Theories of Hydrophobic Solvation
journal, July 2000

  • Gallicchio, E.; Kubo, M. M.; Levy, R. M.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 26
  • DOI: 10.1021/jp0006274

Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data
journal, January 1997

  • Soper, A. K.; Bruni, F.; Ricci, M. A.
  • The Journal of Chemical Physics, Vol. 106, Issue 1
  • DOI: 10.1063/1.473030

Solvent-Aware Interfaces in Continuum Solvation
journal, January 2019

  • Andreussi, Oliviero; Hörmann, Nicolas Georg; Nattino, Francesco
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 3
  • DOI: 10.1021/acs.jctc.8b01174

The importance of nonlinear fluid response in joint density-functional theory studies of battery systems
journal, October 2013

  • Gunceler, Deniz; Letchworth-Weaver, Kendra; Sundararaman, Ravishankar
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074005

Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics
journal, February 2019

  • Magnussen, Olaf M.; Groß, Axel
  • Journal of the American Chemical Society, Vol. 141, Issue 12
  • DOI: 10.1021/jacs.8b13188

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
journal, January 2010

  • Peterson, Andrew A.; Abild-Pedersen, Frank; Studt, Felix
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00071j

Effect of the Solvent on the Oxygen Evolution Reaction at the TiO 2 –Water Interface
journal, July 2019

  • Gono, Patrick; Ambrosio, Francesco; Pasquarello, Alfredo
  • The Journal of Physical Chemistry C, Vol. 123, Issue 30
  • DOI: 10.1021/acs.jpcc.9b05015

Density functional theory with London dispersion corrections: Density functional theory with London dispersion corrections
journal, March 2011

  • Grimme, Stefan
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 2
  • DOI: 10.1002/wcms.30

The electric double layer at metal-water interfaces revisited based on a charge polarization scheme
journal, August 2018

  • Sakong, Sung; Groß, Axel
  • The Journal of Chemical Physics, Vol. 149, Issue 8
  • DOI: 10.1063/1.5040056

Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface
journal, July 2016

  • Liu, Shizhong; White, Michael G.; Liu, Ping
  • The Journal of Physical Chemistry C, Vol. 120, Issue 28
  • DOI: 10.1021/acs.jpcc.6b05126

Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme
journal, January 2019

  • Hille, Christoph; Ringe, Stefan; Deimel, Martin
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5050938

Revised self-consistent continuum solvation in electronic-structure calculations
journal, February 2012

  • Andreussi, Oliviero; Dabo, Ismaila; Marzari, Nicola
  • The Journal of Chemical Physics, Vol. 136, Issue 6
  • DOI: 10.1063/1.3676407

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Understanding trends in electrochemical carbon dioxide reduction rates
journal, May 2017

  • Liu, Xinyan; Xiao, Jianping; Peng, Hongjie
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15438

Properties of metal–water interfaces studied from first principles
journal, December 2009


Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics
journal, October 2019

  • Gauthier, Joseph A.; Dickens, Colin F.; Heenen, Hendrik H.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 12
  • DOI: 10.1021/acs.jctc.9b00717

The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles
journal, May 2016

  • Sakong, Sung; Forster-Tonigold, Katrin; Groß, Axel
  • The Journal of Chemical Physics, Vol. 144, Issue 19
  • DOI: 10.1063/1.4948638

Energy fluctuations induced by the Nosé thermostat
journal, December 1992


pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper
journal, January 2019


Works referencing / citing this record:

Elastic Collision Based Dynamic Partitioning Scheme for Hybrid Simulations
text, January 2021