skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer

Abstract

Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3)N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial $$\langle 001 \rangle$$ direction (N < 3) to eightfold $$\langle 111 \rangle$$ directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [8];  [9]; ORCiD logo [10]; ORCiD logo [8];  [7]; ORCiD logo [2]; ORCiD logo [8];  [11]; ORCiD logo [12]; ORCiD logo [13];  [1]
  1. Univ. of Science and Technology, Hefei (China). Hefei National Lab. for Physical Sciences at the Microscale, National Synchrotron Radiation Lab and Synergetic Innovation Center of Quantum Information and Quantum Physics
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  4. Univ. of Science and Technology, Hefei (China). Hefei National Lab. for Physical Sciences at the Microscale, National Synchrotron Radiation Lab and Synergetic Innovation Center of Quantum Information and Quantum Physics; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  5. Univ. of Science and Technology, Hefei (China). Hefei National Lab. for Physical Sciences at the Microscale, National Synchrotron Radiation Lab.; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  6. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering
  7. Univ. of California, Irvine, CA (United States). Dept. of Physics
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  9. New York Univ. (NYU), Shanghai (China). NYU-ECNU Inst. of Physics
  10. Nankai Univ., Tianjin (China). School of Physics
  11. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Cornell Univ., Ithaca, NY (United States). Cornell High Energy Synchrotron Source (CHESS)
  12. New York Univ. (NYU), Shanghai (China). NYU-ECNU Inst. of Physics; East China Normal Univ. (ECNU), Shanghai (China). State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences; New York Univ. (NYU), NY (United States). Dept. of Physics
  13. Univ. of Science and Technology, Hefei (China). Hefei National Lab. for Physical Sciences at the Microscale, National Synchrotron Radiation Lab and Synergetic Innovation Center of Quantum Information and Quantum Physics; ShanghaiTech Univ. (China). School of Physical Science and Technology
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Key Research and Development Program of China; National Natural Science Foundation of China (NSFC); National Science Foundation (NSF); Chinese Academy of Sciences; Shanghai Pujiang Talents Program
OSTI Identifier:
1631656
Alternate Identifier(s):
OSTI ID: 1760291
Grant/Contract Number:  
AC02-05CH11231; 2016YFA0401004; 51627901; 11574287; AC02-06CH11357; DMR-180781; 2016389; 11774236; 17PJ1407300
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 6; Journal Issue: 15; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Cui, Zhangzhang, Grutter, Alexander J., Zhou, Hua, Cao, Hui, Dong, Yongqi, Gilbert, Dustin A., Wang, Jingyuan, Liu, Yi-Sheng, Ma, Jiaji, Hu, Zhenpeng, Guo, Jinghua, Xia, Jing, Kirby, Brian J., Shafer, Padraic, Arenholz, Elke, Chen, Hanghui, Zhai, Xiaofang, and Lu, Yalin. Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. United States: N. p., 2020. Web. https://doi.org/10.1126/sciadv.aay0114.
Cui, Zhangzhang, Grutter, Alexander J., Zhou, Hua, Cao, Hui, Dong, Yongqi, Gilbert, Dustin A., Wang, Jingyuan, Liu, Yi-Sheng, Ma, Jiaji, Hu, Zhenpeng, Guo, Jinghua, Xia, Jing, Kirby, Brian J., Shafer, Padraic, Arenholz, Elke, Chen, Hanghui, Zhai, Xiaofang, & Lu, Yalin. Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. United States. https://doi.org/10.1126/sciadv.aay0114
Cui, Zhangzhang, Grutter, Alexander J., Zhou, Hua, Cao, Hui, Dong, Yongqi, Gilbert, Dustin A., Wang, Jingyuan, Liu, Yi-Sheng, Ma, Jiaji, Hu, Zhenpeng, Guo, Jinghua, Xia, Jing, Kirby, Brian J., Shafer, Padraic, Arenholz, Elke, Chen, Hanghui, Zhai, Xiaofang, and Lu, Yalin. Fri . "Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer". United States. https://doi.org/10.1126/sciadv.aay0114. https://www.osti.gov/servlets/purl/1631656.
@article{osti_1631656,
title = {Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer},
author = {Cui, Zhangzhang and Grutter, Alexander J. and Zhou, Hua and Cao, Hui and Dong, Yongqi and Gilbert, Dustin A. and Wang, Jingyuan and Liu, Yi-Sheng and Ma, Jiaji and Hu, Zhenpeng and Guo, Jinghua and Xia, Jing and Kirby, Brian J. and Shafer, Padraic and Arenholz, Elke and Chen, Hanghui and Zhai, Xiaofang and Lu, Yalin},
abstractNote = {Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3)N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial $\langle 001 \rangle$ direction (N < 3) to eightfold $\langle 111 \rangle$ directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications.},
doi = {10.1126/sciadv.aay0114},
journal = {Science Advances},
number = 15,
volume = 6,
place = {United States},
year = {2020},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces
journal, September 2011

  • Li, Lu; Richter, C.; Mannhart, J.
  • Nature Physics, Vol. 7, Issue 10, p. 762-766
  • DOI: 10.1038/nphys2080

Local Weak Ferromagnetism in Single-Crystalline Ferroelectric BiFeO 3
journal, November 2011


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Tuning Perpendicular Magnetic Anisotropy by Oxygen Octahedral Rotations in ( La 1 x Sr x MnO 3 ) / ( SrIrO 3 ) Superlattices
journal, August 2017


Control of octahedral rotations in (LaNiO 3 ) n /(SrMnO 3 ) m superlattices
journal, April 2011


Weak ferromagnetism in LaMnO3
journal, October 1999

  • Skumryev, V.; Ott, F.; Coey, J. M. D.
  • The European Physical Journal B, Vol. 11, Issue 3
  • DOI: 10.1007/BF03219176

Projector augmented-wave method
journal, December 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Magnetically driven orbital-selective insulator–metal transition in double perovskite oxides
journal, November 2018


Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO 3
journal, April 2009


Interplay between spin, charge and orbital degrees of freedom in magnetic oxides
journal, April 1997


Giant magnetic response of a two-dimensional antiferromagnet
journal, June 2018


Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

Evidence for canted antiferromagnetism in lightly doped La1-xSrxMnO3
journal, September 2001


Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures
journal, November 2018


Engineering a Spin-Orbital Magnetic Insulator by Tailoring Superlattices
journal, June 2015


Interfacial Ferromagnetism in LaNiO 3 / CaMnO 3 Superlattices
journal, August 2013


Strain-tunable magnetism at oxide domain walls
journal, December 2018


A spin–orbit playground: surfaces and interfaces of transition metal oxides
journal, November 2018

  • Gariglio, S.; Caviglia, A. D.; Triscone, J-M
  • Reports on Progress in Physics, Vol. 82, Issue 1
  • DOI: 10.1088/1361-6633/aad6ab

Thickness-dependent magnetic properties and strain-induced orbital magnetic moment in SrRuO 3 thin films
journal, August 2015


Quantifying octahedral rotations in strained perovskite oxide films
journal, July 2010


Quasiparticle Mass Enhancement and Temperature Dependence of the Electronic Structure of Ferromagnetic SrRuO 3 Thin Films
journal, February 2013


Antiferromagnetism. Theory of Superexchange Interaction
journal, July 1950


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling
journal, March 2016

  • Liao, Z.; Huijben, M.; Zhong, Z.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4579

Giant topological Hall effect in correlated oxide thin films
journal, October 2018


Emergent phenomena at oxide interfaces
journal, January 2012

  • Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3223

Effects of Double Exchange in Magnetic Crystals
journal, April 1960


Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
journal, June 2017

  • Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén
  • Nature, Vol. 546, Issue 7657
  • DOI: 10.1038/nature22391

Superexchange interaction and symmetry properties of electron orbitals
journal, July 1959


Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4
journal, March 2009


Fundamental Thickness Limit of Itinerant Ferromagnetic SrRuO 3 Thin Films
journal, July 2009


Theoretical model for Rashba spin-orbit interaction in d electrons
journal, October 2014


The challenge of spin–orbit-tuned ground states in iridates: a key issues review
journal, February 2018


Highly Confined Spin-Polarized Two-Dimensional Electron Gas in SrTiO 3 / SrRuO 3 Superlattices
journal, March 2012


Complex magnetic order in nickelate slabs
journal, July 2018


Interface-Induced Room-Temperature Ferromagnetism in Hydrogenated Epitaxial Graphene
journal, October 2013


Magnetic Ordering and Structural Phase Transitions in a Strained Ultrathin SrRuO 3 / SrTiO 3 Superlattice
journal, October 2012


Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials
journal, February 2012

  • Kirby, B. J.; Kienzle, P. A.; Maranville, B. B.
  • Current Opinion in Colloid & Interface Science, Vol. 17, Issue 1
  • DOI: 10.1016/j.cocis.2011.11.001

Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery
journal, March 2012

  • Rondinelli, James M.; May, Steven J.; Freeland, John W.
  • MRS Bulletin, Vol. 37, Issue 3
  • DOI: 10.1557/mrs.2012.49

Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface
journal, September 2011

  • Bert, Julie A.; Kalisky, Beena; Bell, Christopher
  • Nature Physics, Vol. 7, Issue 10, p. 767-771
  • DOI: 10.1038/nphys2079

Interface-driven topological Hall effect in SrRuO 3 -SrIrO 3 bilayer
journal, July 2016


reductus : a stateless Python data reduction service with a browser front end
journal, September 2018

  • Maranville, Brian; Ratcliff II, William; Kienzle, Paul
  • Journal of Applied Crystallography, Vol. 51, Issue 5
  • DOI: 10.1107/S1600576718011974

Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices
journal, July 2014

  • Zhai, Xiaofang; Cheng, Long; Liu, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5283

Theory of the Role of Covalence in the Perovskite-Type Manganites [ La ,   M ( II ) ] Mn O 3
journal, October 1955


Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide
journal, March 2016

  • Kan, Daisuke; Aso, Ryotaro; Sato, Riko
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4580

Atomic-scale control of magnetic anisotropy via novel spin–orbit coupling effect in La 2/3 Sr 1/3 MnO 3 /SrIrO 3 superlattices
journal, May 2016

  • Yi, Di; Liu, Jian; Hsu, Shang-Lin
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 23
  • DOI: 10.1073/pnas.1524689113