DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin

Abstract

Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations. Further characterization of conformation space should consider the temporal dynamics specific to each identified substate. Results: Our model uses hierarchical clustering to learn energetically coherent substates and dynamic modes of motion from a 0.5µs ubiqutin simulation. Autoregressive (AR) modeling within and between states enables a compact and generative description of the conformational landscape as it relates to functional transitions between binding poses. Lacking a predictive component, QAA is extended here within a general AR model appreciative of the trajectory’s temporal dependencies and the specific, local dynamics accessible to a protein within identified energy wells. These metastable states and their transition rates are extracted within a QAA-derived subspace using hierarchical Markov clustering to provide parameter sets for the second-order AR model.more » We show the learned model can be extrapolated to synthesize trajectories of arbitrary length.« less

Authors:
 [1];  [1];  [2];  [2];  [2]
  1. Univ. of Pittsburgh, PA (United States). Joint Carnegie Mellon Univ.; Univ. of Pittsburgh, PA (United States). Dept. of Computational and Systems Biology
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Biology Inst. Computer Science and Mathematics Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division; National Institutes of Health (NIH)
OSTI Identifier:
1625275
Grant/Contract Number:  
AC05-00OR22725; T32 EB009403; R01 GM086238
Resource Type:
Accepted Manuscript
Journal Name:
Bioinformatics
Additional Journal Information:
Journal Volume: 27; Journal Issue: 13; Journal ID: ISSN 1367-4803
Publisher:
International Society for Computational Biology - Oxford University Press
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 97 MATHEMATICS AND COMPUTING; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics

Citation Formats

Savol, Andrej J., Burger, Virginia M., Agarwal, P. K., Ramanathan, A., and Chennubhotla, C. S. QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin. United States: N. p., 2011. Web. doi:10.1093/bioinformatics/btr248.
Savol, Andrej J., Burger, Virginia M., Agarwal, P. K., Ramanathan, A., & Chennubhotla, C. S. QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin. United States. https://doi.org/10.1093/bioinformatics/btr248
Savol, Andrej J., Burger, Virginia M., Agarwal, P. K., Ramanathan, A., and Chennubhotla, C. S. Tue . "QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin". United States. https://doi.org/10.1093/bioinformatics/btr248. https://www.osti.gov/servlets/purl/1625275.
@article{osti_1625275,
title = {QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin},
author = {Savol, Andrej J. and Burger, Virginia M. and Agarwal, P. K. and Ramanathan, A. and Chennubhotla, C. S.},
abstractNote = {Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations. Further characterization of conformation space should consider the temporal dynamics specific to each identified substate. Results: Our model uses hierarchical clustering to learn energetically coherent substates and dynamic modes of motion from a 0.5µs ubiqutin simulation. Autoregressive (AR) modeling within and between states enables a compact and generative description of the conformational landscape as it relates to functional transitions between binding poses. Lacking a predictive component, QAA is extended here within a general AR model appreciative of the trajectory’s temporal dependencies and the specific, local dynamics accessible to a protein within identified energy wells. These metastable states and their transition rates are extracted within a QAA-derived subspace using hierarchical Markov clustering to provide parameter sets for the second-order AR model. We show the learned model can be extrapolated to synthesize trajectories of arbitrary length.},
doi = {10.1093/bioinformatics/btr248},
journal = {Bioinformatics},
number = 13,
volume = 27,
place = {United States},
year = {Tue Jun 14 00:00:00 EDT 2011},
month = {Tue Jun 14 00:00:00 EDT 2011}
}

Works referenced in this record:

Protein folded states are kinetic hubs
journal, June 2010

  • Bowman, G. R.; Pande, V. S.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 24
  • DOI: 10.1073/pnas.1003962107

Hierarchical structure of the energy landscape of proteins revisited by time series analysis. I. Mimicking protein dynamics in different time scales
journal, October 2005

  • Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra
  • The Journal of Chemical Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.2042407

Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II. Investigation of explicit solvent effects
journal, October 2005

  • Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra
  • The Journal of Chemical Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.2042408

Following protein folding in real time using NMR spectroscopy
journal, October 1995

  • Balbach, Jochen; Forge, Vincent; van Nuland, Nico A. J.
  • Nature Structural Biology, Vol. 2, Issue 10
  • DOI: 10.1038/nsb1095-865

Markov dynamic models for long-timescale protein motion
journal, June 2010


Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

Free Energy Simulations Come of Age:  Protein−Ligand Recognition
journal, June 2002

  • Simonson, Thomas; Archontis, Georgios; Karplus, Martin
  • Accounts of Chemical Research, Vol. 35, Issue 6
  • DOI: 10.1021/ar010030m

Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II. Investigation of explicit solvent effects
journal, October 2005

  • Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra
  • The Journal of Chemical Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.2042408

The energy landscapes and motions of proteins
journal, December 1991


Markov dynamic models for long-timescale protein motion
journal, June 2010


Free Energy Simulations Come of Age:  Protein−Ligand Recognition
journal, June 2002

  • Simonson, Thomas; Archontis, Georgios; Karplus, Martin
  • Accounts of Chemical Research, Vol. 35, Issue 6
  • DOI: 10.1021/ar010030m

Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
journal, April 2007

  • Chodera, John D.; Singhal, Nina; Pande, Vijay S.
  • The Journal of Chemical Physics, Vol. 126, Issue 15
  • DOI: 10.1063/1.2714538

Quasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models
journal, January 2005

  • Kneller, Gerald R.
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 13
  • DOI: 10.1039/b502040a

Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics
journal, July 2007

  • Chennubhotla, Chakra; Bahar, Ivet
  • Journal of Computational Biology, Vol. 14, Issue 6
  • DOI: 10.1089/cmb.2007.R015

Accelerating molecular dynamics simulations by linear prediction of time series
journal, April 2003

  • Brutovsky, B.; Mülders, T.; Kneller, G. R.
  • The Journal of Chemical Physics, Vol. 118, Issue 14
  • DOI: 10.1063/1.1559033

High-Order Contrasts for Independent Component Analysis
journal, January 1999


Dynamic personalities of proteins
journal, December 2007

  • Henzler-Wildman, Katherine; Kern, Dorothee
  • Nature, Vol. 450, Issue 7172
  • DOI: 10.1038/nature06522

Following protein folding in real time using NMR spectroscopy
journal, October 1995

  • Balbach, Jochen; Forge, Vincent; van Nuland, Nico A. J.
  • Nature Structural Biology, Vol. 2, Issue 10
  • DOI: 10.1038/nsb1095-865

Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin
journal, January 1987


Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
journal, April 2007

  • Chodera, John D.; Singhal, Nina; Pande, Vijay S.
  • The Journal of Chemical Physics, Vol. 126, Issue 15
  • DOI: 10.1063/1.2714538

The energy landscapes and motions of proteins
journal, December 1991


Accelerating molecular dynamics simulations by linear prediction of time series
journal, April 2003

  • Brutovsky, B.; Mülders, T.; Kneller, G. R.
  • The Journal of Chemical Physics, Vol. 118, Issue 14
  • DOI: 10.1063/1.1559033

Application of time series analysis on molecular dynamics simulations of proteins: A study of different conformational spaces by principal component analysis
journal, September 2004

  • Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.
  • The Journal of Chemical Physics, Vol. 121, Issue 10
  • DOI: 10.1063/1.1778377

Principal Component Analysis and Long Time Protein Dynamics
journal, January 1996

  • Balsera, M. A.; Wriggers, W.; Oono, Y.
  • The Journal of Physical Chemistry, Vol. 100, Issue 7
  • DOI: 10.1021/jp9536920

ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale
journal, May 2009

  • Harvey, M. J.; Giupponi, G.; Fabritiis, G. De
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 6
  • DOI: 10.1021/ct9000685

Computing memory functions from molecular dynamics simulations
journal, December 2001

  • Kneller, G. R.; Hinsen, K.
  • The Journal of Chemical Physics, Vol. 115, Issue 24
  • DOI: 10.1063/1.1421361

Signal Propagation in Proteins and Relation to Equilibrium Fluctuations
journal, September 2007


Discovering Conformational Sub-States Relevant to Protein Function
journal, January 2011


Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide
journal, April 2007

  • West, Anthony M. A.; Elber, Ron; Shalloway, David
  • The Journal of Chemical Physics, Vol. 126, Issue 14
  • DOI: 10.1063/1.2716389

Making membrane proteins for structures: a trillion tiny tweaks
journal, June 2010


Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide
journal, April 2007

  • West, Anthony M. A.; Elber, Ron; Shalloway, David
  • The Journal of Chemical Physics, Vol. 126, Issue 14
  • DOI: 10.1063/1.2716389

Molecular dynamics of ferrocytochrome c: Anharmonicity of atomic displacements
journal, October 1982

  • Mao, Boryeu; Pear, Michael R.; McCammon, J. A.
  • Biopolymers, Vol. 21, Issue 10
  • DOI: 10.1002/bip.360211005

Essential dynamics of proteins
journal, December 1993

  • Amadei, Andrea; Linssen, Antonius B. M.; Berendsen, Herman J. C.
  • Proteins: Structure, Function, and Genetics, Vol. 17, Issue 4
  • DOI: 10.1002/prot.340170408

Signal Propagation in Proteins and Relation to Equilibrium Fluctuations
journal, September 2007


Discovering Conformational Sub-States Relevant to Protein Function
journal, January 2011


Conformational Substates in Proteins
journal, June 1988


Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution
journal, June 2008


Computational Identification of Slow Conformational Fluctuations in Proteins
journal, December 2009

  • Ramanathan, Arvind; Agarwal, Pratul K.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 52
  • DOI: 10.1021/jp9077213

Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES
journal, January 2006

  • Chennubhotla, Chakra; Bahar, Ivet
  • Molecular Systems Biology, Vol. 2, Issue 1
  • DOI: 10.1038/msb4100075

An Online Approach for Mining Collective Behaviors from Molecular Dynamics Simulations
book, January 2009


Full correlation analysis of conformational protein dynamics
journal, September 2007

  • Lange, Oliver F.; Grubmüller, Helmut
  • Proteins: Structure, Function, and Bioinformatics, Vol. 70, Issue 4
  • DOI: 10.1002/prot.21618

Analysis of a 10-ns Molecular Dynamics Simulation of Mouse Acetylcholinesterase
journal, August 2001


Essential dynamics of proteins
journal, December 1993

  • Amadei, Andrea; Linssen, Antonius B. M.; Berendsen, Herman J. C.
  • Proteins: Structure, Function, and Genetics, Vol. 17, Issue 4
  • DOI: 10.1002/prot.340170408

Molecular dynamics of ferrocytochrome c: Anharmonicity of atomic displacements
journal, October 1982

  • Mao, Boryeu; Pear, Michael R.; McCammon, J. A.
  • Biopolymers, Vol. 21, Issue 10
  • DOI: 10.1002/bip.360211005

Molecular dynamics simulations of biomolecules
journal, September 2002

  • Karplus, Martin; McCammon, J. Andrew
  • Nature Structural Biology, Vol. 9, Issue 9
  • DOI: 10.1038/nsb0902-646

Mimicking Protein Dynamics by the Integration of Elastic Network Model with Time Series Analysis
journal, February 2007

  • Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra
  • The International Journal of High Performance Computing Applications, Vol. 21, Issue 1
  • DOI: 10.1177/1094342006074861

Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin
journal, January 1987


Molecular dynamics simulations of biomolecules
journal, September 2002

  • Karplus, Martin; McCammon, J. Andrew
  • Nature Structural Biology, Vol. 9, Issue 9
  • DOI: 10.1038/nsb0902-646

Can Principal Components Yield a Dimension Reduced Description of Protein Dynamics on Long Time Scales?
journal, November 2006

  • Lange, Oliver F.; Grubmüller, Helmut
  • The Journal of Physical Chemistry B, Vol. 110, Issue 45
  • DOI: 10.1021/jp062548j

Application of time series analysis on molecular dynamics simulations of proteins: A study of different conformational spaces by principal component analysis
journal, September 2004

  • Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.
  • The Journal of Chemical Physics, Vol. 121, Issue 10
  • DOI: 10.1063/1.1778377

High-Order Contrasts for Independent Component Analysis
journal, January 1999


Mimicking Protein Dynamics by the Integration of Elastic Network Model with Time Series Analysis
journal, February 2007

  • Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra
  • The International Journal of High Performance Computing Applications, Vol. 21, Issue 1
  • DOI: 10.1177/1094342006074861

Dynameomics: A Comprehensive Database of Protein Dynamics
journal, March 2010


Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

Full correlation analysis of conformational protein dynamics
journal, September 2007

  • Lange, Oliver F.; Grubmüller, Helmut
  • Proteins: Structure, Function, and Bioinformatics, Vol. 70, Issue 4
  • DOI: 10.1002/prot.21618

On-the-Fly Identification of Conformational Substates from Molecular Dynamics Simulations
journal, February 2011

  • Ramanathan, Arvind; Yoo, Ji Oh; Langmead, Christopher J.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 3
  • DOI: 10.1021/ct100531j

Using FPGA Devices to Accelerate Biomolecular Simulations
journal, March 2007

  • Alam, Sadaf R.; Agarwal, Pratul K.; Smith, Melissa C.
  • Computer, Vol. 40, Issue 3
  • DOI: 10.1109/MC.2007.108

Active Contours
book, January 1998


Anton, a special-purpose machine for molecular dynamics simulation
journal, June 2007

  • Shaw, David E.; Chao, Jack C.; Eastwood, Michael P.
  • ACM SIGARCH Computer Architecture News, Vol. 35, Issue 2
  • DOI: 10.1145/1273440.1250664

Works referencing / citing this record:

DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions
journal, September 2016

  • Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi
  • Nucleic Acids Research
  • DOI: 10.1093/nar/gkw770

Deep Generative Model Driven Protein Folding Simulation
preprint, January 2019


Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain
journal, September 2012