skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery

Abstract

Sodium metal batteries have potentially high energy densities, but severe sodium-dendrite growth and side reactions prevent their practical applications, especially at high temperatures. Herein, we design an inorganic ionic conductor/gel polymer electrolyte composite, where uniformly cross-linked beta alumina nanowires are compactly coated by a poly(vinylidene fluoride-co-hexafluoropropylene)-based gel polymer electrolyte through their strong molecular interactions. These beta alumina nanowires combined with the gel polymer layer create dense and homogeneous solid-liquid hybrid sodium-ion transportation channels through and along the nanowires, which promote uniform sodium deposition and formation of a stable and flat solid electrolyte interface on the sodium metal anode. Side reactions between the sodium metal and liquid electrolyte, as well as sodium dendrite formation, are successfully suppressed, especially at 60 °C. The sodium vanadium phosphate/sodium full cells with composite electrolyte exhibit 95.3% and 78.8% capacity retention after 1000 cycles at 1C at 25 °C and 60 °C, respectively.

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [5];  [2];  [2];  [2];  [6];  [7];  [2];  [2];  [2];  [2];  [8];  [2];  [9]; ORCiD logo [10]; ORCiD logo [4];  [11]
  1. Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
  2. Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
  3. Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, Anhui, China
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  5. Xiamen Institute of Rare Earth Materials, Haixi institutes, Chinese Academy of Sciences, Xiamen, China
  6. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
  7. Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
  8. Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, Anhui, China; Dalian National Laboratory for Clean Energy (DNL), Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
  9. Nanoyang Group, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
  10. State Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
  11. Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; National Key Research Program; National Natural Science Foundation of China (NNSFC); Local Innovative Research Teams Project of Guangdong Pearl River Talents Program; Guangdong special support program; Guangdong Province Technical Plan Project; Shenzhen Technical Plan Project; DNL cooperation Fund, Chinese Academy of Sciences (CAS)
OSTI Identifier:
1624189
Grant/Contract Number:  
AC02-06CH11357; 2018YFB0905400; 51672156; 51622210; 51872277; 51802361; 2017BT01N111; 2015TQ01N401; 2017B010119001; 2017B090907005; JCYJ20170412170706047; JCYJ20170307153806471; JCYJ20170817161221958; DNL180310
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
Science & Technology - Other Topics

Citation Formats

Lei, Danni, He, Yan-Bing, Huang, Huijuan, Yuan, Yifei, Zhong, Guiming, Zhao, Qiang, Hao, Xiaoge, Zhang, Danfeng, Lai, Chen, Zhang, Siwei, Ma, Jiabin, Wei, Yinping, Yu, Qipeng, Lv, Wei, Yu, Yan, Li, Baohua, Yang, Quan-Hong, Yang, Yong, Lu, Jun, and Kang, Feiyu. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. United States: N. p., 2019. Web. doi:10.1038/s41467-019-11960-w.
Lei, Danni, He, Yan-Bing, Huang, Huijuan, Yuan, Yifei, Zhong, Guiming, Zhao, Qiang, Hao, Xiaoge, Zhang, Danfeng, Lai, Chen, Zhang, Siwei, Ma, Jiabin, Wei, Yinping, Yu, Qipeng, Lv, Wei, Yu, Yan, Li, Baohua, Yang, Quan-Hong, Yang, Yong, Lu, Jun, & Kang, Feiyu. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. United States. doi:10.1038/s41467-019-11960-w.
Lei, Danni, He, Yan-Bing, Huang, Huijuan, Yuan, Yifei, Zhong, Guiming, Zhao, Qiang, Hao, Xiaoge, Zhang, Danfeng, Lai, Chen, Zhang, Siwei, Ma, Jiabin, Wei, Yinping, Yu, Qipeng, Lv, Wei, Yu, Yan, Li, Baohua, Yang, Quan-Hong, Yang, Yong, Lu, Jun, and Kang, Feiyu. Wed . "Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery". United States. doi:10.1038/s41467-019-11960-w. https://www.osti.gov/servlets/purl/1624189.
@article{osti_1624189,
title = {Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery},
author = {Lei, Danni and He, Yan-Bing and Huang, Huijuan and Yuan, Yifei and Zhong, Guiming and Zhao, Qiang and Hao, Xiaoge and Zhang, Danfeng and Lai, Chen and Zhang, Siwei and Ma, Jiabin and Wei, Yinping and Yu, Qipeng and Lv, Wei and Yu, Yan and Li, Baohua and Yang, Quan-Hong and Yang, Yong and Lu, Jun and Kang, Feiyu},
abstractNote = {Sodium metal batteries have potentially high energy densities, but severe sodium-dendrite growth and side reactions prevent their practical applications, especially at high temperatures. Herein, we design an inorganic ionic conductor/gel polymer electrolyte composite, where uniformly cross-linked beta alumina nanowires are compactly coated by a poly(vinylidene fluoride-co-hexafluoropropylene)-based gel polymer electrolyte through their strong molecular interactions. These beta alumina nanowires combined with the gel polymer layer create dense and homogeneous solid-liquid hybrid sodium-ion transportation channels through and along the nanowires, which promote uniform sodium deposition and formation of a stable and flat solid electrolyte interface on the sodium metal anode. Side reactions between the sodium metal and liquid electrolyte, as well as sodium dendrite formation, are successfully suppressed, especially at 60 °C. The sodium vanadium phosphate/sodium full cells with composite electrolyte exhibit 95.3% and 78.8% capacity retention after 1000 cycles at 1C at 25 °C and 60 °C, respectively.},
doi = {10.1038/s41467-019-11960-w},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Li-ion battery materials: present and future
journal, June 2015


Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


Confined Amorphous Red Phosphorus in MOF-Derived N-Doped Microporous Carbon as a Superior Anode for Sodium-Ion Battery
journal, February 2017


Sodium-ion batteries: present and future
journal, January 2017

  • Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00776G

A stable room-temperature sodium–sulfur battery
journal, June 2016

  • Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11722

Ambient-Temperature Sodium-Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode
journal, April 2015


High Performance Na-CuCl 2 Rechargeable Battery toward Room Temperature ZEBRA-Type Battery
journal, July 2016

  • Kim, Bo-Ram; Jeong, Goojin; Kim, Ayoung
  • Advanced Energy Materials, Vol. 6, Issue 20
  • DOI: 10.1002/aenm.201600862

Dissolution and ionization of sodium superoxide in sodium–oxygen batteries
journal, February 2016

  • Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10670

A rechargeable room-temperature sodium superoxide (NaO2) battery
journal, December 2012

  • Hartmann, Pascal; Bender, Conrad L.; Vračar, Miloš
  • Nature Materials, Vol. 12, Issue 3, p. 228-232
  • DOI: 10.1038/nmat3486

Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density
journal, February 2016

  • Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10683

Ion–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode
journal, January 2018

  • Chen, Xiang; Shen, Xin; Li, Bo
  • Angewandte Chemie International Edition, Vol. 57, Issue 3
  • DOI: 10.1002/anie.201711552

Electrolyte design strategies and research progress for room-temperature sodium-ion batteries
journal, January 2017

  • Che, Haiying; Chen, Suli; Xie, Yingying
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00524E

Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes
journal, January 2018


Ionic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies
journal, May 2018

  • Basile, Andrew; Hilder, Matthias; Makhlooghiazad, Faezeh
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703491

Facile Stabilization of the Sodium Metal Anode with Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate
journal, May 2018

  • Wang, Huan; Wang, Chuanlong; Matios, Edward
  • Angewandte Chemie International Edition, Vol. 57, Issue 26
  • DOI: 10.1002/anie.201801818

High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt
journal, May 2018

  • Shi, Qiuwei; Zhong, Yiren; Wu, Min
  • Angewandte Chemie International Edition, Vol. 57, Issue 29
  • DOI: 10.1002/anie.201803049

Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes
journal, January 2017


Ultrathin Surface Coating Enables the Stable Sodium Metal Anode
journal, September 2016

  • Luo, Wei; Lin, Chuan-Fu; Zhao, Oliver
  • Advanced Energy Materials, Vol. 7, Issue 2
  • DOI: 10.1002/aenm.201601526

Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition
journal, March 2017

  • Zhao, Yang; Goncharova, Lyudmila V.; Lushington, Andrew
  • Advanced Materials, Vol. 29, Issue 18
  • DOI: 10.1002/adma.201606663

Inorganic–Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode
journal, August 2017


Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries
journal, December 2017

  • Zhao, Qing; Tu, Zhengyuan; Wei, Shuya
  • Angewandte Chemie International Edition, Vol. 57, Issue 4
  • DOI: 10.1002/anie.201711598

Fast ion transport at solid–solid interfaces in hybrid battery anodes
journal, March 2018


A Chemically Engineered Porous Copper Matrix with Cylindrical Core-Shell Skeleton as a Stable Host for Metallic Sodium Anodes
journal, May 2018

  • Wang, Chuanlong; Wang, Huan; Matios, Edward
  • Advanced Functional Materials, Vol. 28, Issue 30
  • DOI: 10.1002/adfm.201802282

Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries
journal, May 2018


3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes
journal, January 2018

  • Chi, Shang-Sen; Qi, Xing-Guo; Hu, Yong-Sheng
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201702764

Porous Al Current Collector for Dendrite-Free Na Metal Anodes
journal, August 2017


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries
journal, January 2017

  • Fu, Kun (Kelvin); Gong, Yunhui; Hitz, Gregory T.
  • Energy & Environmental Science, Vol. 10, Issue 7
  • DOI: 10.1039/C7EE01004D

Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes
journal, January 2016


A Sodium-Ion Battery with a Low-Cost Cross-Linked Gel-Polymer Electrolyte
journal, June 2016

  • Gao, Hongcai; Zhou, Weidong; Park, Kyusung
  • Advanced Energy Materials, Vol. 6, Issue 18
  • DOI: 10.1002/aenm.201600467

A sodium ion conducting gel polymer electrolyte
journal, January 2015


A Structurable Gel-Polymer Electrolyte for Sodium Ion Batteries
journal, July 2017

  • Kim, Jin Il; Choi, Yunah; Chung, Kyung Yoon
  • Advanced Functional Materials, Vol. 27, Issue 34
  • DOI: 10.1002/adfm.201701768

A Composite Gel-Polymer/Glass-Fiber Electrolyte for Sodium-Ion Batteries
journal, February 2015

  • Gao, Hongcai; Guo, Bingkun; Song, Jie
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201402235

Challenges and perspectives on high and intermediate-temperature sodium batteries
journal, June 2017


Electrolyte and Interface Engineering for Solid-State Sodium Batteries
journal, September 2018


The relative stability of spray-frozen/freeze-dried β″-Al2O3 powders
journal, October 1980


Isothermal crystallization of poly(vinylidene fluoride) in the presence of high static electric fields. I. Primary nucleation phenomenon
journal, July 1988

  • Marand, H. L.; Stein, R. S.; Stack, G. M.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 26, Issue 7
  • DOI: 10.1002/polb.1988.090260703

An ion redistributor for dendrite-free lithium metal anodes
journal, November 2018


Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic–Organic Composite Protective Layer
journal, February 2017

  • Kim, Yun-Jung; Lee, Hongkyung; Noh, Hyungjun
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 7
  • DOI: 10.1021/acsami.6b14437

Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes
journal, July 2017


A Highly Reversible Room-Temperature Sodium Metal Anode
journal, November 2015


Graphite fluorides: An XPS study of a new type of C-F bonding
journal, May 1989


Highly Reversible Na Storage in Na 3 V 2 (PO 4 ) 3 by Optimizing Nanostructure and Rational Surface Engineering
journal, March 2018

  • Jiang, Yu; Zhou, Xuefeng; Li, Dongjun
  • Advanced Energy Materials, Vol. 8, Issue 16
  • DOI: 10.1002/aenm.201800068