DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa

Abstract

Abstract We investigated the high-pressure behavior of polyethylene (CH 2 ) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A 2 /m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.

Authors:
ORCiD logo; ; ORCiD logo; ; ; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo « less
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1619502
Alternate Identifier(s):
OSTI ID: 1505422
Grant/Contract Number:  
AC02-76SF00515; VH-NG-1141; 16K17846; AC52-07NA27344; SC0018298; 05P15RDFA1; SF00515
Resource Type:
Published Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Name: Scientific Reports Journal Volume: 9 Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., and Kraus, D. Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa. United Kingdom: N. p., 2019. Web. doi:10.1038/s41598-019-40782-5.
Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., & Kraus, D. Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa. United Kingdom. https://doi.org/10.1038/s41598-019-40782-5
Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., and Kraus, D. Tue . "Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa". United Kingdom. https://doi.org/10.1038/s41598-019-40782-5.
@article{osti_1619502,
title = {Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa},
author = {Hartley, N. J. and Brown, S. and Cowan, T. E. and Cunningham, E. and Döppner, T. and Falcone, R. W. and Fletcher, L. B. and Frydrych, S. and Galtier, E. and Gamboa, E. J. and Laso Garcia, A. and Gericke, D. O. and Glenzer, S. H. and Granados, E. and Heimann, P. A. and Lee, H. J. and MacDonald, M. J. and MacKinnon, A. J. and McBride, E. E. and Nam, I. and Neumayer, P. and Pak, A. and Pelka, A. and Prencipe, I. and Ravasio, A. and Rödel, M. and Rohatsch, K. and Saunders, A. M. and Schölmerich, M. and Schörner, M. and Schuster, A. K. and Sun, P. and van Driel, T. and Vorberger, J. and Kraus, D.},
abstractNote = {Abstract We investigated the high-pressure behavior of polyethylene (CH 2 ) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A 2 /m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.},
doi = {10.1038/s41598-019-40782-5},
journal = {Scientific Reports},
number = 1,
volume = 9,
place = {United Kingdom},
year = {Tue Mar 12 00:00:00 EDT 2019},
month = {Tue Mar 12 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41598-019-40782-5

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic of the experimental setup at the Matter at Extreme Conditions endstation of LCLS. The high-energy laser beam irradiates the plastic sample, driving a shock wave into it. The conditions reached were monitored by a VISAR diagnostic, and the compressed sample was probed by a single X-ray pulsemore » at either 8.1 or 8.2 keV. The scattered X-ray signal was observed by the large area CS-PAD detector. The inset shows example pulse shapes for square and step pulses, each averaged over four shots.« less

Save / Share:

Works referenced in this record:

Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields
journal, March 2004


MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics
journal, June 1988


Hydrostatic compression of the monoclinic form of polyethylene
journal, January 1987

  • Miyaji, Hideki; Asahi, Takanao; Miyamoto, Yoshihisa
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 25, Issue 1
  • DOI: 10.1002/polb.1987.090250112

HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF KEPLER ’S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU
journal, June 2015


A universal equation of state for solids
journal, July 1986


Methane Planets and Their Mass–Radius Relation
journal, May 2015


Jupiter Models with Improved ab Initio Hydrogen Equation of State (H-Reos.2)
journal, April 2012


Dissociation of methane under high pressure
journal, October 2010

  • Gao, Guoying; Oganov, Artem R.; Ma, Yanming
  • The Journal of Chemical Physics, Vol. 133, Issue 14
  • DOI: 10.1063/1.3488102

VISAR for measuring equation of state and shock propagation in liquid deuterium (abstract)
journal, January 2001

  • Celliers, P. M.; Collins, G. W.; Bradley, D. K.
  • Review of Scientific Instruments, Vol. 72, Issue 1
  • DOI: 10.1063/1.1326011

Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions
journal, January 1999


Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
journal, March 2016

  • Kraus, D.; Ravasio, A.; Gauthier, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10970

Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures
journal, December 2018


Temperature effects on the universal equation of state of solids
journal, February 1987


Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
journal, January 2012

  • Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2160

Uranus evolution models with simple thermal boundary layers
journal, September 2016


The phase diagram of water and the magnetic fields of Uranus and Neptune
journal, January 2011


Numerical dynamo models of Uranus' and Neptune's magnetic fields
journal, October 2006


Interior Structure of Neptune: Comparison with Uranus
journal, August 1991


Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
journal, August 2017


Thermophysical properties for shock compressed polystyrene
journal, August 2011

  • Wang, Cong; He, Xian-Tu; Zhang, Ping
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3625273

Planetary Ices and the Linear Mixing Approximation
journal, October 2017


The ice layer in Uranus and Neptune—diamonds in the sky?
journal, July 1981


First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions
journal, October 2015


DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Phase Transformation and Deformation Processes in Oriented Polyethylene
journal, January 1968

  • Seto, Tsuneo; Hara, Tetsuhiko; Tanaka, Kenzo
  • Japanese Journal of Applied Physics, Vol. 7, Issue 1
  • DOI: 10.1143/JJAP.7.31

High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion
journal, May 2018

  • Kraus, D.; Hartley, N. J.; Frydrych, S.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5017908

Magnetic fields of Uranus and Neptune: Metallic fluid hydrogen
conference, January 2017

  • Nellis, W. J.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2015: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.4971621

Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability
journal, May 2016

  • Madhusudhan, Nikku; Agúndez, Marcelino; Moses, Julianne I.
  • Space Science Reviews, Vol. 205, Issue 1-4
  • DOI: 10.1007/s11214-016-0254-3

Targets for high repetition rate laser facilities: needs, challenges and perspectives
journal, January 2017

  • Prencipe, I.; Fuchs, J.; Pascarelli, S.
  • High Power Laser Science and Engineering, Vol. 5
  • DOI: 10.1017/hpl.2017.18

The Nature of the Interior of Uranus Based on Studies of Planetary Ices at High Dynamic Pressure
journal, May 1988


Exploring exoplanet populations with NASA's Kepler Mission
journal, July 2014


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.