DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks

Abstract

Thermoelectric devices possess enormous potential to reshape the global energy landscape by converting waste heat into electricity, yet their commercial implementation has been limited by their high cost to output power ratio. No single “champion” thermoelectric material exists due to a broad range of material-dependent thermal and electrical property optimization challenges. While the advent of nanostructuring provided a general design paradigm for reducing material thermal conductivities, there exists no analogous strategy for homogeneous, precise doping of materials. Here, we demonstrate a nanoscale interface-engineering approach that harnesses the large chemically accessible surface areas of nanomaterials to yield massive, finely-controlled, and stable changes in the Seebeck coefficient, switching a poor nonconventional p-type thermoelectric material, tellurium, into a robust n-type material exhibiting stable properties over months of testing. These remodeled, n-type nanowires display extremely high power factors (~500 µW m-1K-2) that are orders of magnitude higher than their bulk p-type counterparts.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [2];  [2]; ORCiD logo [5];  [6];  [6]; ORCiD logo [5];  [7]; ORCiD logo [8]; ORCiD logo [5]
  1. New York Univ., Brooklyn, NY (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  3. Chinese Academy of Sciences (CAS), Beijing (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stevens Inst. of Technology, Hoboken, NJ (United States); Univ. of California, Berkeley, CA (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. Univ. of California, Berkeley, CA (United States)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Portland, OR (United States)
  8. Univ. of California, Santa Barbara, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1616987
Grant/Contract Number:  
AC02-05CH11231; FA9550-11-C-0028
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 11; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; electronic devices; organic-inorganic nanostructures

Citation Formats

Sahu, Ayaskanta, Russ, Boris, Liu, Miao, Yang, Fan, Zaia, Edmond W., Gordon, Madeleine P., Forster, Jason D., Zhang, Ya-Qian, Scott, Mary C., Persson, Kristin A., Coates, Nelson E., Segalman, Rachel A., and Urban, Jeffrey J. In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks. United States: N. p., 2020. Web. doi:10.1038/s41467-020-15933-2.
Sahu, Ayaskanta, Russ, Boris, Liu, Miao, Yang, Fan, Zaia, Edmond W., Gordon, Madeleine P., Forster, Jason D., Zhang, Ya-Qian, Scott, Mary C., Persson, Kristin A., Coates, Nelson E., Segalman, Rachel A., & Urban, Jeffrey J. In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks. United States. https://doi.org/10.1038/s41467-020-15933-2
Sahu, Ayaskanta, Russ, Boris, Liu, Miao, Yang, Fan, Zaia, Edmond W., Gordon, Madeleine P., Forster, Jason D., Zhang, Ya-Qian, Scott, Mary C., Persson, Kristin A., Coates, Nelson E., Segalman, Rachel A., and Urban, Jeffrey J. Wed . "In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks". United States. https://doi.org/10.1038/s41467-020-15933-2. https://www.osti.gov/servlets/purl/1616987.
@article{osti_1616987,
title = {In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks},
author = {Sahu, Ayaskanta and Russ, Boris and Liu, Miao and Yang, Fan and Zaia, Edmond W. and Gordon, Madeleine P. and Forster, Jason D. and Zhang, Ya-Qian and Scott, Mary C. and Persson, Kristin A. and Coates, Nelson E. and Segalman, Rachel A. and Urban, Jeffrey J.},
abstractNote = {Thermoelectric devices possess enormous potential to reshape the global energy landscape by converting waste heat into electricity, yet their commercial implementation has been limited by their high cost to output power ratio. No single “champion” thermoelectric material exists due to a broad range of material-dependent thermal and electrical property optimization challenges. While the advent of nanostructuring provided a general design paradigm for reducing material thermal conductivities, there exists no analogous strategy for homogeneous, precise doping of materials. Here, we demonstrate a nanoscale interface-engineering approach that harnesses the large chemically accessible surface areas of nanomaterials to yield massive, finely-controlled, and stable changes in the Seebeck coefficient, switching a poor nonconventional p-type thermoelectric material, tellurium, into a robust n-type material exhibiting stable properties over months of testing. These remodeled, n-type nanowires display extremely high power factors (~500 µW m-1K-2) that are orders of magnitude higher than their bulk p-type counterparts.},
doi = {10.1038/s41467-020-15933-2},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United States},
year = {Wed Apr 29 00:00:00 EDT 2020},
month = {Wed Apr 29 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Resonant band engineering by interfacial resurfacing. a, b Schematic of the doping process (not to scale) showing the evolution of the density of states and the change in Fermi level with removal of the polymer (polyvinylpyrrolidone, PVP) and attachment of the sulfur (S2−) atoms. CB and VB standmore » for conduction band and valence band, respectively. At low sulfur concentration, isolated states originate close to the CB of tellurium which transform to a prominent sulfur-generated dopant band at high concentrations. c–e Transmission electron micrographs of undoped, intermediate- and heavily doped 80-nm diameter tellurium (Te) nanowires (NWs), respectively. The insets show high resolution images with both the inorganic component and the polymer layer. While one can observe a thick polymer layer in c, the doped sample in d shows a thinner layer and the one in e shows no evidence of any polymer.« less

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Significantly Enhanced Thermoelectric Properties of PEDOT:PSS Films through Sequential Post-Treatments with Common Acids and Bases
journal, December 2016


The Effects of the Size and the Doping Concentration on the Power Factor of n-type Lead Telluride Nanocrystals for Thermoelectric Energy Conversion
journal, February 2014

  • Fang, Haiyu; Luo, Zhiqiang; Yang, Haoran
  • Nano Letters, Vol. 14, Issue 3, p. 1153-1157
  • DOI: 10.1021/nl403677k

Projector augmented-wave method
journal, December 1994


On the metallic states in highly conducting iodine-doped polyacetylene
journal, November 1990


Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction
journal, January 2018

  • Liu, Yuanyue; Wu, Wenzhuo; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 140, Issue 2
  • DOI: 10.1021/jacs.7b09964

Flexible thermoelectric materials and device optimization for wearable energy harvesting
journal, January 2015

  • Bahk, Je-Hyeong; Fang, Haiyu; Yazawa, Kazuaki
  • Journal of Materials Chemistry C, Vol. 3, Issue 40
  • DOI: 10.1039/C5TC01644D

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals
journal, September 2016

  • Varghese, Tony; Hollar, Courtney; Richardson, Joseph
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33135

Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices
journal, November 2018


Molecular Level Insight into Enhanced n‐Type Transport in Solution‐Printed Hybrid Thermoelectrics
journal, February 2019

  • Zaia, Edmond W.; Gordon, Madeleine P.; Niemann, Valerie
  • Advanced Energy Materials, Vol. 9, Issue 13
  • DOI: 10.1002/aenm.201803469

High thermoelectric performance by resonant dopant indium in nanostructured SnTe
journal, July 2013

  • Zhang, Q.; Liao, B.; Lan, Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 33, p. 13261-13266
  • DOI: 10.1073/pnas.1305735110

Thermoelectric figure of merit of a one-dimensional conductor
journal, June 1993


New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

The best thermoelectric.
journal, July 1996

  • Mahan, G. D.; Sofo, J. O.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 15
  • DOI: 10.1073/pnas.93.15.7436

3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks
journal, January 2018


The Masses of Free Holes and Electrons in Tellurium
journal, April 1974


Energy harvesting for the implantable biomedical devices: issues and challenges
journal, January 2014

  • Hannan, Mahammad A.; Mutashar, Saad; Samad, Salina A.
  • BioMedical Engineering OnLine, Vol. 13, Issue 1
  • DOI: 10.1186/1475-925X-13-79

Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet‐of‐Things Applications
journal, February 2019

  • Zaia, Edmond W.; Gordon, Madeleine P.; Yuan, Pengyu
  • Advanced Electronic Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aelm.201800823

Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic
journal, October 2008

  • Cho, Jeong Ho; Lee, Jiyoul; Xia, Yu
  • Nature Materials, Vol. 7, Issue 11, p. 900-906
  • DOI: 10.1038/nmat2291

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
journal, July 2008

  • Heremans, J. P.; Jovovic, V.; Toberer, E. S.
  • Science, Vol. 321, Issue 5888, p. 554-557
  • DOI: 10.1126/science.1159725

Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic-inorganic thermoelectrics
journal, December 2018


Raman Spectra and Lattice Dynamics of Tellurium
journal, July 1971


Enhanced Thermopower in PbSe Nanocrystal Quantum Dot Superlattices
journal, August 2008

  • Wang, Robert Y.; Feser, Joseph P.; Lee, Jong-Soo
  • Nano Letters, Vol. 8, Issue 8, p. 2283-2288
  • DOI: 10.1021/nl8009704

n-type colloidal semiconductor nanocrystals
journal, October 2000

  • Shim, Moonsub; Guyot-Sionnest, Philippe
  • Nature, Vol. 407, Issue 6807
  • DOI: 10.1038/35039577

P-type doping of elemental bismuth with indium, gallium and tin: a novel doping mechanism in solids
journal, January 2015

  • Jin, Hyungyu; Wiendlocha, Bartlomiej; Heremans, Joseph P.
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01309G

Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
journal, March 2006

  • Tritt, Terry M.; Subramanian, M. A.
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.44

Resonant levels in bulk thermoelectric semiconductors
journal, January 2012

  • Heremans, Joseph P.; Wiendlocha, Bartlomiej; Chamoire, Audrey M.
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/C1EE02612G

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
journal, February 2006


Magnetoabsorptionsmessungen an Tellur
journal, January 1968


Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles
journal, November 2009

  • Scheele, Marcus; Oeschler, Niels; Meier, Katrin
  • Advanced Functional Materials, Vol. 19, Issue 21, p. 3476-3483
  • DOI: 10.1002/adfm.200901261

Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties
journal, November 2011

  • Zhang, Genqiang; Kirk, Benjamin; Jauregui, Luis A.
  • Nano Letters, Vol. 12, Issue 1, p. 56-60
  • DOI: 10.1021/nl202935k

Tellurium as a high-performance elemental thermoelectric
journal, January 2016

  • Lin, Siqi; Li, Wen; Chen, Zhiwei
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10287

On the Generation of Free Radical Species from Quantum Dots
journal, July 2005

  • Ipe, Binil Itty; Lehnig, Manfred; Niemeyer, Christof M.
  • Small, Vol. 1, Issue 7
  • DOI: 10.1002/smll.200500105

The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators
journal, September 1991

  • Slack, Glen A.; Hussain, Moayyed A.
  • Journal of Applied Physics, Vol. 70, Issue 5
  • DOI: 10.1063/1.349385

High Conductivity and Electron-Transfer Validation in an n-Type Fluoride-Anion-Doped Polymer for Thermoelectrics in Air
journal, July 2017


PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Titanium Sulfides as Intercalation-Type Cathode Materials for Rechargeable Aluminum Batteries
journal, June 2017

  • Geng, Linxiao; Scheifers, Jan P.; Fu, Chengyin
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 25
  • DOI: 10.1021/acsami.7b04161

Enhanced Molecular Packing of a Conjugated Polymer with High Organic Thermoelectric Power Factor
journal, September 2016


Quantum Dot Superlattice Thermoelectric Materials and Devices
journal, September 2002


Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Modulation of Thermoelectric Power Factor via Radial Dopant Inhomogeneity in B-Doped Si Nanowires
journal, August 2014

  • Zhuge, Fuwei; Yanagida, Takeshi; Fukata, Naoki
  • Journal of the American Chemical Society, Vol. 136, Issue 40, p. 14100-14106
  • DOI: 10.1021/ja5055884

Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric Transport
journal, January 2013

  • Coates, Nelson E.; Yee, Shannon K.; McCulloch, Bryan
  • Advanced Materials, Vol. 25, Issue 11, p. 1629-1633
  • DOI: 10.1002/adma.201203915

High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process
journal, November 2016


Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking
journal, January 2015

  • Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan
  • Nano Letters, Vol. 15, Issue 2, p. 1349-1355
  • DOI: 10.1021/nl504624r

Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide
journal, January 2012

  • Zhang, Qinyong; Wang, Hui; Liu, Weishu
  • Energy Environ. Sci., Vol. 5, Issue 1, p. 5246-5251
  • DOI: 10.1039/C1EE02465E

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Solution-printable fullerene/TiS 2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics
journal, January 2018

  • Wang, Liming; Zhang, Zimeng; Geng, Linxiao
  • Energy & Environmental Science, Vol. 11, Issue 5
  • DOI: 10.1039/C7EE03617E

Materials and Mechanics for Stretchable Electronics
journal, March 2010


Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
journal, September 1992


Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as Surface Ligands
journal, July 2011

  • Nag, Angshuman; Kovalenko, Maksym V.; Lee, Jong-Soo
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10612-10620
  • DOI: 10.1021/ja2029415

Chromium as resonant donor impurity in PbTe
journal, January 2012


Design Principle of Telluride-Based Nanowire Heterostructures for Potential Thermoelectric Applications
journal, June 2012

  • Zhang, Genqiang; Fang, Haiyu; Yang, Haoran
  • Nano Letters, Vol. 12, Issue 7, p. 3627-3633
  • DOI: 10.1021/nl301327d

Resonant level formed by tin in Bi 2 Te 3 and the enhancement of room-temperature thermoelectric power
journal, December 2009

  • Jaworski, Christopher M.; Kulbachinskii, Vladimir; Heremans, Joseph P.
  • Physical Review B, Vol. 80, Issue 23
  • DOI: 10.1103/PhysRevB.80.233201

Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites
journal, January 2012

  • Yu, Bo; Zebarjadi, Mona; Wang, Hui
  • Nano Letters, Vol. 12, Issue 4, p. 2077-2082
  • DOI: 10.1021/nl3003045

Toward High Performance n -Type Thermoelectric Materials by Rational Modification of BDPPV Backbones
journal, May 2015

  • Shi, Ke; Zhang, Fengjiao; Di, Chong-An
  • Journal of the American Chemical Society, Vol. 137, Issue 22
  • DOI: 10.1021/jacs.5b00945

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Titanium forms a resonant level in the conduction band of PbTe
journal, November 2011


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.