DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes

Abstract

Organic cathode materials are promising for developing high-energy and high-power Li-ion batteries (LIBs). However, the energy storage of most organic cathodes relies on the electron transfer of a single type of functional group, leading to either a low redox potential or a low capacity. Here we propose a new strategy for the structure design and performance optimization of organic materials. Furthermore, a new organic cathode, dithianon (DTN), containing three functional groups (-S-, C=O, C equivalent to N) in one framework, is reported. The -S- group increases the redox potential to 3.0 V, while C=O and C equivalent to N groups enable a three Li-ions-involved redox reaction. As a cathode, DTN delivers 270.2 mAh g-1 at 0.5C for 300 cycles. Even at 5C, it still retains 161.5 mAh g-1 after 1000 cycles. The high-capacity, high-power, and stable DTN cathode offers great promise for high-performance and sustainable LIBs.

Authors:
 [1];  [1];  [1];  [2];  [1]; ORCiD logo [1]; ORCiD logo [3];  [4];  [1]; ORCiD logo [1];  [1]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Univ. of Maryland, College Park, MD (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); Northwestern Univ., Evanston, IL (United States)
  4. Argonne National Lab. (ANL), Lemont, IL (United States). Advanced Photon Source (APS)
  5. George Mason Univ., Fairfax, VA (United States)
  6. Argonne National Lab. (ANL), Lemont, IL (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; George Mason Univ.
OSTI Identifier:
1615739
Grant/Contract Number:  
AC02-06CH11357; SC0001160; FG02-03ER15457; 183904
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Redox reactions; electrodes; carbonyls; physical and chemical processes; natural organic matter

Citation Formats

Cui, Chunyu, Ji, Xiao, Wang, Peng-Fei, Xu, Gui-Liang, Chen, Long, Chen, Ji, Kim, Hacksung, Ren, Yang, Chen, Fu, Yang, Chongyin, Fan, Xiulin, Luo, Chao, Amine, Khalil, and Wang, Chunsheng. Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes. United States: N. p., 2019. Web. doi:10.1021/acsenergylett.9b02466.
Cui, Chunyu, Ji, Xiao, Wang, Peng-Fei, Xu, Gui-Liang, Chen, Long, Chen, Ji, Kim, Hacksung, Ren, Yang, Chen, Fu, Yang, Chongyin, Fan, Xiulin, Luo, Chao, Amine, Khalil, & Wang, Chunsheng. Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes. United States. https://doi.org/10.1021/acsenergylett.9b02466
Cui, Chunyu, Ji, Xiao, Wang, Peng-Fei, Xu, Gui-Liang, Chen, Long, Chen, Ji, Kim, Hacksung, Ren, Yang, Chen, Fu, Yang, Chongyin, Fan, Xiulin, Luo, Chao, Amine, Khalil, and Wang, Chunsheng. Wed . "Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes". United States. https://doi.org/10.1021/acsenergylett.9b02466. https://www.osti.gov/servlets/purl/1615739.
@article{osti_1615739,
title = {Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes},
author = {Cui, Chunyu and Ji, Xiao and Wang, Peng-Fei and Xu, Gui-Liang and Chen, Long and Chen, Ji and Kim, Hacksung and Ren, Yang and Chen, Fu and Yang, Chongyin and Fan, Xiulin and Luo, Chao and Amine, Khalil and Wang, Chunsheng},
abstractNote = {Organic cathode materials are promising for developing high-energy and high-power Li-ion batteries (LIBs). However, the energy storage of most organic cathodes relies on the electron transfer of a single type of functional group, leading to either a low redox potential or a low capacity. Here we propose a new strategy for the structure design and performance optimization of organic materials. Furthermore, a new organic cathode, dithianon (DTN), containing three functional groups (-S-, C=O, C equivalent to N) in one framework, is reported. The -S- group increases the redox potential to 3.0 V, while C=O and C equivalent to N groups enable a three Li-ions-involved redox reaction. As a cathode, DTN delivers 270.2 mAh g-1 at 0.5C for 300 cycles. Even at 5C, it still retains 161.5 mAh g-1 after 1000 cycles. The high-capacity, high-power, and stable DTN cathode offers great promise for high-performance and sustainable LIBs.},
doi = {10.1021/acsenergylett.9b02466},
journal = {ACS Energy Letters},
number = 1,
volume = 5,
place = {United States},
year = {Wed Dec 18 00:00:00 EST 2019},
month = {Wed Dec 18 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Li-ion battery materials: present and future
journal, June 2015


Optimized LiFePO[sub 4] for Lithium Battery Cathodes
journal, January 2001

  • Yamada, A.; Chung, S. C.; Hinokuma, K.
  • Journal of The Electrochemical Society, Vol. 148, Issue 3
  • DOI: 10.1149/1.1348257

Layered Lithium Insertion Material of LiNi 1/2 Mn 1/2 O 2 : A Possible Alternative to LiCoO 2 for Advanced Lithium-Ion Batteries
journal, August 2001

  • Ohzuku, Tsutomu; Makimura, Yoshinari
  • Chemistry Letters, Vol. 30, Issue 8
  • DOI: 10.1246/cl.2001.744

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, August 2016

  • Luo, Kun; Roberts, Matthew R.; Guerrini, Niccoló
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05111

Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

A High-Capacity O2-Type Li-Rich Cathode Material with a Single-Layer Li 2 MnO 3 Superstructure
journal, March 2018


Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries
journal, March 2018


Organic Electrode Materials for Rechargeable Lithium Batteries
journal, May 2012

  • Liang, Yanliang; Tao, Zhanliang; Chen, Jun
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201100795

Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery
journal, February 2017


Towards sustainable and versatile energy storage devices: an overview of organic electrode materials
journal, January 2013

  • Song, Zhiping; Zhou, Haoshen
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2280-2301
  • DOI: 10.1039/c3ee40709h

Carbonyls: Powerful Organic Materials for Secondary Batteries
journal, April 2015

  • Häupler, Bernhard; Wild, Andreas; Schubert, Ulrich S.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201402034

Conjugated dicarboxylate anodes for Li-ion batteries
journal, January 2009

  • Armand, M.; Grugeon, S.; Vezin, H.
  • Nature Materials, Vol. 8, Issue 2, p. 120-125
  • DOI: 10.1038/nmat2372

Universal quinone electrodes for long cycle life aqueous rechargeable batteries
journal, June 2017

  • Liang, Yanliang; Jing, Yan; Gheytani, Saman
  • Nature Materials, Vol. 16, Issue 8
  • DOI: 10.1038/nmat4919

G-quadruplex organic frameworks
journal, December 2016

  • Wu, Yi-Lin; Horwitz, Noah E.; Chen, Kan-Sheng
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2689

Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage
journal, September 2015

  • Song, Zhiping; Qian, Yumin; Gordin, Mikhail L.
  • Angewandte Chemie, Vol. 127, Issue 47
  • DOI: 10.1002/ange.201506673

Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity
journal, November 2012

  • Nokami, Toshiki; Matsuo, Takahiro; Inatomi, Yuu
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja306663g

Organic-Catholyte-Containing Flexible Rechargeable Lithium Batteries
journal, August 2015

  • Park, Minjoon; Shin, Dong-Seon; Ryu, Jaechan
  • Advanced Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adma.201502329

From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries
journal, April 2008


Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries
journal, January 2009

  • Song, Zhiping; Zhan, Hui; Zhou, Yunhong
  • Chemical Communications, Vol. 0, Issue 4, p. 448-450
  • DOI: 10.1039/B814515F

Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries
journal, April 2012

  • Song, Zhiping; Xu, Terrence; Gordin, Mikhail L.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl2039666

Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes
journal, May 2017


Biologically inspired pteridine redox centres for rechargeable batteries
journal, October 2014

  • Hong, Jihyun; Lee, Minah; Lee, Byungju
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6335

Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium‐Ion Batteries
journal, May 2019

  • Lu, Yong; Hou, Xuesen; Miao, Licheng
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201902185

A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries
journal, June 2018

  • Luo, Zhiqiang; Liu, Luojia; Ning, Jiaxin
  • Angewandte Chemie International Edition, Vol. 57, Issue 30
  • DOI: 10.1002/anie.201805540

Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity
journal, November 2017

  • Zhao, Hongyang; Wang, Jianwei; Zheng, Yuheng
  • Angewandte Chemie, Vol. 129, Issue 48
  • DOI: 10.1002/ange.201708960

Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a B N Unit
journal, February 2015

  • Dou, Chuandong; Ding, Zicheng; Zhang, Zijian
  • Angewandte Chemie International Edition, Vol. 54, Issue 12
  • DOI: 10.1002/anie.201411973

A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery
journal, April 2016

  • Ma, Ting; Zhao, Qing; Wang, Jianbin
  • Angewandte Chemie International Edition, Vol. 55, Issue 22
  • DOI: 10.1002/anie.201601119

Disulfide Bond Dihedral Angles from Raman Spectroscopy
journal, September 1973

  • Van Wart, H. E.; Lewis, A.; Scheraga, H. A.
  • Proceedings of the National Academy of Sciences, Vol. 70, Issue 9
  • DOI: 10.1073/pnas.70.9.2619

Anthraquinone on Porous Carbon Nanotubes with Improved Supercapacitor Performance
journal, April 2014

  • Chen, Xiao; Wang, Huanwen; Yi, Huan
  • The Journal of Physical Chemistry C, Vol. 118, Issue 16
  • DOI: 10.1021/jp5009626

Surface-enhanced Raman spectra of the reduction product of 4-cyanopyridine on copper colloids
journal, August 1998


Infrared spectral evidence of N≡C–C≡C–N≡C: Photoisomerization of N≡C–C≡C–C≡N in an argon matrix
journal, February 1993

  • Smith, Alice M.; Schallmoser, Günter; Thoma, Anton
  • The Journal of Chemical Physics, Vol. 98, Issue 3
  • DOI: 10.1063/1.464266

Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries
journal, April 2015


Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors
journal, January 2010

  • Brezesinski, Torsten; Wang, John; Tolbert, Sarah H.
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2612

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x
journal, December 2016

  • Kim, Hyung-Seok; Cook, John B.; Lin, Hao
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4810

Vibrational spectroscopy of polypyrrole, theoretical study
journal, February 1995

  • Kostić, R.; Raković, D.; Stepanyan, S. A.
  • The Journal of Chemical Physics, Vol. 102, Issue 8
  • DOI: 10.1063/1.468620

Nanocomposites glass/conductive polymers
journal, February 1999


Improving the electrochemical performance of the LiNi 0.5 Mn 1.5 O 4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery
journal, January 2015

  • Gao, Xuan-Wen; Deng, Yuan-Fu; Wexler, David
  • Journal of Materials Chemistry A, Vol. 3, Issue 1
  • DOI: 10.1039/C4TA04018J