DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ternary inorganic electrides with mixed bonding

Abstract

A high-throughput screening based on first-principles calculations was performed to search for new ternary inorganic electrides. From the available materials database, we identified three new thermodynamically stable materials (Li12Mg3Si4, NaBa2O, and Ca5Ga2N4) as potential electrides made by main group elements, in addition to the well known mayenite based electride (C12A7:e). Different from those conventional inorganic electrides in which the excess electrons play only the role of anions, the three new materials, resembling the electrides found in simple metals under high pressure, possess mixed ionic and metallic bonding. The interplay between two competing mechanisms, together with the different crystal packing motifs, gives rise to a variety of geometries in anionic electrons and rich physical phenomena such as ferromagnetism, superconductivity, and metal-insulator transition. Furthermore, our finding here bridges the gap between electrides found at ambient and high-pressure conditions.

Authors:
 [1];  [2];  [3];  [4]
  1. Tokyo Inst. of Technology, Kanagawa (Japan); Northwestern Polytechnical Univ., Shanxi (China)
  2. Univ. of Nevada, Las Vegas, NV (United States)
  3. Skolkovo Inst. of Science and Technology, Moscow (Russia)
  4. Tokyo Inst. of Technology, Kanagawa (Japan)
Publication Date:
Research Org.:
Univ. of Nevada, Reno, NV (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES); Natural Science Foundation of China
OSTI Identifier:
1614466
Alternate Identifier(s):
OSTI ID: 1493963
Grant/Contract Number:  
NA0001982; 51872242; AC02-98CH10086; DENA0001982
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 99; Journal Issue: 6; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Materials Science; Physics; Electronic structure; Ferromagnetism; First-principles calculations

Citation Formats

Wang, Junjie, Zhu, Qiang, Wang, Zhenhai, and Hosono, Hideo. Ternary inorganic electrides with mixed bonding. United States: N. p., 2019. Web. doi:10.1103/physrevb.99.064104.
Wang, Junjie, Zhu, Qiang, Wang, Zhenhai, & Hosono, Hideo. Ternary inorganic electrides with mixed bonding. United States. https://doi.org/10.1103/physrevb.99.064104
Wang, Junjie, Zhu, Qiang, Wang, Zhenhai, and Hosono, Hideo. Fri . "Ternary inorganic electrides with mixed bonding". United States. https://doi.org/10.1103/physrevb.99.064104. https://www.osti.gov/servlets/purl/1614466.
@article{osti_1614466,
title = {Ternary inorganic electrides with mixed bonding},
author = {Wang, Junjie and Zhu, Qiang and Wang, Zhenhai and Hosono, Hideo},
abstractNote = {A high-throughput screening based on first-principles calculations was performed to search for new ternary inorganic electrides. From the available materials database, we identified three new thermodynamically stable materials (Li12Mg3Si4, NaBa2O, and Ca5Ga2N4) as potential electrides made by main group elements, in addition to the well known mayenite based electride (C12A7:e–). Different from those conventional inorganic electrides in which the excess electrons play only the role of anions, the three new materials, resembling the electrides found in simple metals under high pressure, possess mixed ionic and metallic bonding. The interplay between two competing mechanisms, together with the different crystal packing motifs, gives rise to a variety of geometries in anionic electrons and rich physical phenomena such as ferromagnetism, superconductivity, and metal-insulator transition. Furthermore, our finding here bridges the gap between electrides found at ambient and high-pressure conditions.},
doi = {10.1103/physrevb.99.064104},
journal = {Physical Review B},
number = 6,
volume = 99,
place = {United States},
year = {Fri Feb 08 00:00:00 EST 2019},
month = {Fri Feb 08 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs
journal, December 2016

  • Hosono, Hideo; Kim, Junghwan; Toda, Yoshitake
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 2
  • DOI: 10.1073/pnas.1617186114

Two-Dimensional Transition-Metal Electride Y 2 C
journal, November 2014

  • Zhang, Xiao; Xiao, Zewen; Lei, Hechang
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm503512h

Water Durable Electride Y 5 Si 3 : Electronic Structure and Catalytic Activity for Ammonia Synthesis
journal, March 2016

  • Lu, Yangfan; Li, Jiang; Tada, Tomofumi
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00124

Exploration for Two-Dimensional Electrides via Database Screening and Ab Initio Calculation
journal, August 2014


Direct observation of a pressure-induced metal-to-semiconductor transition in lithium
journal, March 2009


Theoretical Descriptors of Electrides
journal, October 2018

  • Dale, Stephen G.; Johnson, Erin R.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 49
  • DOI: 10.1021/acs.jpca.8b08548

High Pressure Electrides: A Predictive Chemical and Physical Theory
journal, February 2014

  • Miao, Mao-Sheng; Hoffmann, Roald
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar4002922

First-Principles Prediction of New Electrides with Nontrivial Band Topology Based on One-Dimensional Building Blocks
journal, January 2018


Local density of states analysis using Bader decomposition for N 2 and CO 2 adsorbed on Pt(110)-(1 × 2) electrodes
journal, October 2012

  • Gudmundsdóttir, Sigrídur; Tang, Wenjie; Henkelman, Graeme
  • The Journal of Chemical Physics, Vol. 137, Issue 16
  • DOI: 10.1063/1.4761893

Exploration of Stable Strontium Phosphide-Based Electrides: Theoretical Structure Prediction and Experimental Validation
journal, October 2017

  • Wang, Junjie; Hanzawa, Kota; Hiramatsu, Hidenori
  • Journal of the American Chemical Society, Vol. 139, Issue 44
  • DOI: 10.1021/jacs.7b06279

A simple measure of electron localization in atomic and molecular systems
journal, May 1990

  • Becke, A. D.; Edgecombe, K. E.
  • The Journal of Chemical Physics, Vol. 92, Issue 9
  • DOI: 10.1063/1.458517

Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store
journal, October 2012

  • Kitano, Masaaki; Inoue, Yasunori; Yamazaki, Youhei
  • Nature Chemistry, Vol. 4, Issue 11
  • DOI: 10.1038/nchem.1476

ChemInform Abstract: Crystal Structure of Li12Mg3Si4 and Li12Al3Si4.
journal, December 1992


Activation and splitting of carbon dioxide on the surface of an inorganic electride material
journal, August 2013

  • Toda, Yoshitake; Hirayama, Hiroyuki; Kuganathan, Navaratnarajah
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3378

Dense Low-Coordination Phases of Lithium
journal, April 2009


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Electrides: Early Examples of Quantum Confinement
journal, October 2009

  • Dye, James L.
  • Accounts of Chemical Research, Vol. 42, Issue 10
  • DOI: 10.1021/ar9000857

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Predicted Pressure-Induced s -Band Ferromagnetism in Alkali Metals
journal, August 2011


Is Mayenite without Clathrated Oxygen an Inorganic Electride?
journal, December 2004

  • Li, Zhenyu; Yang, Jinlong; Hou, J. G.
  • Angewandte Chemie International Edition, Vol. 43, Issue 47
  • DOI: 10.1002/anie.200461200

Superconductivity in an Inorganic Electride 12CaO·7Al 2 O 3 :e -
journal, June 2007

  • Miyakawa, Masashi; Kim, Sung Wng; Hirano, Masahiro
  • Journal of the American Chemical Society, Vol. 129, Issue 23
  • DOI: 10.1021/ja0724644

Topological Electride Y 2 C
journal, February 2018


Superconductivity in compressed lithium at 20 K
journal, October 2002

  • Shimizu, Katsuya; Ishikawa, Hiroto; Takao, Daigoroh
  • Nature, Vol. 419, Issue 6907
  • DOI: 10.1038/nature01098

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


First-Principles Prediction of Thermodynamically Stable Two-Dimensional Electrides
journal, November 2016

  • Ming, Wenmei; Yoon, Mina; Du, Mao-Hua
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b05586

Predicted Novel High-Pressure Phases of Lithium
journal, January 2011


Dicalcium nitride as a two-dimensional electride with an anionic electron layer
journal, January 2013

  • Lee, Kimoon; Kim, Sung Wng; Toda, Yoshitake
  • Nature, Vol. 494, Issue 7437
  • DOI: 10.1038/nature11812

High-Throughput ab Initio Screening for Two-Dimensional Electride Materials
journal, September 2014

  • Tada, Tomofumi; Takemoto, Seiji; Matsuishi, Satoru
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic501362b

Intermetallic Ca 3 Pb: a topological zero-dimensional electride material
journal, January 2018

  • Zhang, Xiaoming; Guo, Ruikang; Jin, Lei
  • Journal of Materials Chemistry C, Vol. 6, Issue 3
  • DOI: 10.1039/C7TC04989G

High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-)
journal, August 2003


Interstitial Electronic Localization
journal, July 2008


Superconductivity in room-temperature stable electride and high-pressure phases of alkali metals
journal, March 2015

  • Hosono, Hideo; Kim, Sung-Wng; Matsuishi, Satoru
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2037
  • DOI: 10.1098/rsta.2014.0450

Darstellung und Kristallstruktur von Ca5Ga2N4 / Preparation and Crystal Structure of Ca5Ga2N4
journal, October 1988


Ferromagnetic instability of interlayer floating electrons in the quasi-two-dimensional electride Y 2 C
journal, November 2015


NaBa2O: A Fresh Perspective in Suboxide Chemistry
journal, November 2001


Electrides as a New Platform of Topological Materials
journal, September 2018


Quasimolecules in Compressed Lithium
journal, December 2016

  • Miao, Mao-sheng; Hoffmann, Roald; Botana, Jorge
  • Angewandte Chemie International Edition, Vol. 56, Issue 4
  • DOI: 10.1002/anie.201608490

High-Pressure Electrides: The Chemical Nature of Interstitial Quasiatoms
journal, March 2015

  • Miao, Mao-sheng; Hoffmann, Roald
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/jacs.5b00242

Transparent dense sodium
journal, March 2009

  • Ma, Yanming; Eremets, Mikhail; Oganov, Artem R.
  • Nature, Vol. 458, Issue 7235
  • DOI: 10.1038/nature07786

Superconductivity in lithium under high pressure investigated with density functional and Eliashberg theory
journal, February 2009


Electride: from computational characterization to theoretical design: Electride: from computational characterization to theoretical design
journal, March 2016

  • Zhao, Songtao; Kan, Erjun; Li, Zhenyu
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 6, Issue 4
  • DOI: 10.1002/wcms.1258

Hydride-Based Electride Material, LnH 2 (Ln = La, Ce, or Y)
journal, August 2016


Computer-Assisted Inverse Design of Inorganic Electrides
journal, February 2017