DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Effect of Suprathermal Protons in the Heliosheath on the Global Structure of the Heliosphere and Heliotail

Abstract

In the interaction between the solar wind (SW) and the local interstellar medium, various processes create ions with energies up to ~10 keV that are out of thermal equilibrium with the "core" population. Wave–particle interactions tend to isotropize the velocity distributions, but the collisionless nature of the SW precludes thermalization. Suprathermal protons can charge-exchange with interstellar hydrogen, producing energetic neutral atoms that are seen by the Interstellar Boundary EXplorer spacecraft. We have developed a model for the presence of several suprathermal populations in the SW downstream of the heliospheric termination shock. The model uses magnetohydrodynamics to satisfy the first three moments of the total ion distribution, and couples these through charge-exchange to neutral hydrogen, conserving mass, momentum, and energy in the combined system. The proton population is separated into a cool core and three suprathermal populations, and hydrogen atoms may charge-exchange with protons from any of those four populations. The phase-space properties of the pick-up ions are selected based on data and theoretical considerations. In this paper we quantify the impact of suprathermal protons on the global structure of the heliosphere by comparing our new model to a traditional Maxwellian fluid model, and a kappa-distribution model. We find that themore » differences in momentum and energy transfer rates from the protons onto neutral hydrogen between the models leads to different plasma properties in the heliotail, and also changes the size of the heliosphere. Including the energy-dependent charge-exchange cross section into the collision integrals reduces the magnitude of these differences.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]
  1. Univ. of Alabama, Huntsville, AL (United States). Center for Space Plasma and Aeronomic Research
  2. Princeton Univ., NJ (United States)
  3. Southwest Research Inst., San Antonio, TX (United States)
Publication Date:
Research Org.:
Univ. of Alabama, Huntsville, AL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1611036
Grant/Contract Number:  
SC0008334; NNX16AG83G; NNX14AP24G; NNX14AJ53G; 80NSSC18K1649NS; NNX14AF43G
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 874; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Astronomy & Astrophysics; ISM: atoms; solar wind; Sun: heliosphere

Citation Formats

Heerikhuisen, Jacob, Zirnstein, Eric J., Pogorelov, Nikolai V., Zank, Gary P., and Desai, Mihir. The Effect of Suprathermal Protons in the Heliosheath on the Global Structure of the Heliosphere and Heliotail. United States: N. p., 2019. Web. doi:10.3847/1538-4357/ab05e3.
Heerikhuisen, Jacob, Zirnstein, Eric J., Pogorelov, Nikolai V., Zank, Gary P., & Desai, Mihir. The Effect of Suprathermal Protons in the Heliosheath on the Global Structure of the Heliosphere and Heliotail. United States. https://doi.org/10.3847/1538-4357/ab05e3
Heerikhuisen, Jacob, Zirnstein, Eric J., Pogorelov, Nikolai V., Zank, Gary P., and Desai, Mihir. Tue . "The Effect of Suprathermal Protons in the Heliosheath on the Global Structure of the Heliosphere and Heliotail". United States. https://doi.org/10.3847/1538-4357/ab05e3. https://www.osti.gov/servlets/purl/1611036.
@article{osti_1611036,
title = {The Effect of Suprathermal Protons in the Heliosheath on the Global Structure of the Heliosphere and Heliotail},
author = {Heerikhuisen, Jacob and Zirnstein, Eric J. and Pogorelov, Nikolai V. and Zank, Gary P. and Desai, Mihir},
abstractNote = {In the interaction between the solar wind (SW) and the local interstellar medium, various processes create ions with energies up to ~10 keV that are out of thermal equilibrium with the "core" population. Wave–particle interactions tend to isotropize the velocity distributions, but the collisionless nature of the SW precludes thermalization. Suprathermal protons can charge-exchange with interstellar hydrogen, producing energetic neutral atoms that are seen by the Interstellar Boundary EXplorer spacecraft. We have developed a model for the presence of several suprathermal populations in the SW downstream of the heliospheric termination shock. The model uses magnetohydrodynamics to satisfy the first three moments of the total ion distribution, and couples these through charge-exchange to neutral hydrogen, conserving mass, momentum, and energy in the combined system. The proton population is separated into a cool core and three suprathermal populations, and hydrogen atoms may charge-exchange with protons from any of those four populations. The phase-space properties of the pick-up ions are selected based on data and theoretical considerations. In this paper we quantify the impact of suprathermal protons on the global structure of the heliosphere by comparing our new model to a traditional Maxwellian fluid model, and a kappa-distribution model. We find that the differences in momentum and energy transfer rates from the protons onto neutral hydrogen between the models leads to different plasma properties in the heliotail, and also changes the size of the heliosphere. Including the energy-dependent charge-exchange cross section into the collision integrals reduces the magnitude of these differences.},
doi = {10.3847/1538-4357/ab05e3},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 874,
place = {United States},
year = {Tue Mar 26 00:00:00 EDT 2019},
month = {Tue Mar 26 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Monte-Carlo simulation of neutral atoms trajectories in the solar system
journal, January 1991

  • Malama, Yu. G.
  • Astrophysics and Space Science, Vol. 176, Issue 1
  • DOI: 10.1007/BF00643074

Heliolatitude and Time Variations of Solar Wind Structure from in situ Measurements and Interplanetary Scintillation Observations
journal, May 2012


Time-varying Heliospheric Distance to the Heliopause
journal, August 2017

  • Washimi, Haruichi; Tanaka, Takashi; Zank, Gary P.
  • The Astrophysical Journal, Vol. 846, Issue 1
  • DOI: 10.3847/2041-8213/aa8556

Implications of solar wind suprathermal tails for IBEX ENA images of the heliosheath: KAPPA DISTRIBUTIONS AND IBEX ENA FLUX MAPS
journal, June 2008

  • Prested, C.; Schwadron, N.; Passuite, J.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A6
  • DOI: 10.1029/2007JA012758

Pickup ion energization by shock surfing
journal, March 1996

  • Lee, Martin A.; Shapiro, Vitali D.; Sagdeev, Roald Z.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A3
  • DOI: 10.1029/95JA03570

Orientation of the local interstellar magnetic field inferred from Voyagers' positions
journal, January 2008

  • Ratkiewicz, R.; Grygorczuk, J.
  • Geophysical Research Letters, Vol. 35, Issue 23
  • DOI: 10.1029/2008GL036117

Electron Thermal Conduction as a Possible Physical Mechanism to make the Inner Heliosheath Thinner
journal, October 2014

  • Izmodenov, V. V.; Alexashov, D. B.; Ruderman, M. S.
  • The Astrophysical Journal, Vol. 795, Issue 1
  • DOI: 10.1088/2041-8205/795/1/L7

The Effects of a Local Interstellar Magnetic Field on Voyager 1 and 2 Observations
journal, March 2006

  • Opher, Merav; Stone, Edward C.; Liewer, Paulett C.
  • The Astrophysical Journal, Vol. 640, Issue 1
  • DOI: 10.1086/503251

Interaction of the solar wind with the local interstellar medium: A multifluid approach
journal, October 1996

  • Zank, G. P.; Pauls, H. L.; Williams, L. L.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A10
  • DOI: 10.1029/96JA02127

Pickup ion Mediated Plasmas. i. Basic Model and Linear Waves in the Solar wind and Local Interstellar Medium
journal, December 2014


ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER ( IBEX ): EVIDENCE FOR MULTIPLE HELIOSHEATH POPULATIONS
journal, December 2013


In Situ Observations of Preferential Pickup Ion Heating at an Interplanetary Shock
journal, August 2018


A Forecast of the Heliospheric Termination-Shock Position by Three-dimensional MHD Simulations
journal, October 2007

  • Washimi, Haruichi; Zank, Gary P.; Hu, Qiang
  • The Astrophysical Journal, Vol. 670, Issue 2
  • DOI: 10.1086/524358

Crossing the Termination Shock into the Heliosheath: Magnetic Fields
journal, September 2005


Charge-Exchange Coupling Between Pickup ions Across the Heliopause and its Effect on Energetic Neutral Hydrogen flux
journal, February 2014


Interaction between the solar wind and interstellar gas: A comparison between Monte Carlo and fluid approaches
journal, January 2006

  • Heerikhuisen, J.; Florinski, V.; Zank, G. P.
  • Journal of Geophysical Research, Vol. 111, Issue A6
  • DOI: 10.1029/2006JA011604

The Heliosphere's Interstellar Interaction: No Bow Shock
journal, May 2012


The Effects of a κ‐Distribution in the Heliosheath on the Global Heliosphere and ENA Flux at 1 AU
journal, July 2008

  • Heerikhuisen, J.; Pogorelov, N. V.; Florinski, V.
  • The Astrophysical Journal, Vol. 682, Issue 1
  • DOI: 10.1086/588248

Charge transfer cross sections for energetic neutral atom data analysis
journal, January 2005

  • Lindsay, B. G.; Stebbings, R. F.
  • Journal of Geophysical Research, Vol. 110, Issue A12
  • DOI: 10.1029/2005JA011298

Hybrid simulations of the termination shock: Suprathermal ion velocity distributions in the heliosheath: ION DISTRIBUTIONS IN HELIOSHEATH
journal, November 2010

  • Wu, Pin; Liu, Kaijun; Winske, Dan
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A11
  • DOI: 10.1029/2010JA015384

PICKUP ION DYNAMICS AT THE HELIOSPHERIC TERMINATION SHOCK OBSERVED BY VOYAGER 2
journal, May 2010


Seven Years of Imaging the Global Heliosphere with IBEX
journal, April 2017

  • McComas, D. J.; Zirnstein, E. J.; Bzowski, M.
  • The Astrophysical Journal Supplement Series, Vol. 229, Issue 2
  • DOI: 10.3847/1538-4365/aa66d8

Understanding Kappa Distributions: A Toolbox for Space Science and Astrophysics
journal, May 2013


Energy Distribution of Pickup Ions at the Solar Wind Termination Shock
journal, June 2018

  • Kumar, Rahul; Zirnstein, Eric J.; Spitkovsky, Anatoly
  • The Astrophysical Journal, Vol. 860, Issue 2
  • DOI: 10.3847/1538-4357/aabf96

Local interstellar medium
journal, March 1975


Hydrodynamic instability of the heliopause driven by plasma-neutral charge-exchange interactions
journal, August 1996

  • Liewer, Paulett C.; Karmesin, S. Roy; Brackbill, J. U.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A8
  • DOI: 10.1029/96JA00606

Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma
journal, December 2005


IBEX—Interstellar Boundary Explorer
journal, April 2009


Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of Heliospheric Ions
journal, June 2013


Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock
journal, July 2008

  • Richardson, John D.; Kasper, Justin C.; Wang, Chi
  • Nature, Vol. 454, Issue 7200
  • DOI: 10.1038/nature07024

Structure of the Heliotail from Interstellar Boundary Explorer Observations: Implications for the 11-year Solar Cycle and Pickup Ions in the Heliosheath
journal, February 2017

  • Zirnstein, E. J.; Heerikhuisen, J.; Zank, G. P.
  • The Astrophysical Journal, Vol. 836, Issue 2
  • DOI: 10.3847/1538-4357/aa5cb2

Three‐dimensional Features of the Outer Heliosphere due to Coupling between the Interstellar and Interplanetary Magnetic Fields. II. The Presence of Neutral Hydrogen Atoms
journal, June 2006

  • Pogorelov, Nikolai V.; Zank, Gary P.; Ogino, Tatsuki
  • The Astrophysical Journal, Vol. 644, Issue 2
  • DOI: 10.1086/503703

An asymmetric solar wind termination shock
journal, July 2008

  • Stone, Edward C.; Cummings, Alan C.; McDonald, Frank B.
  • Nature, Vol. 454, Issue 7200
  • DOI: 10.1038/nature07022

SPECTRAL PROPERTIES OF ∼0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER ( IBEX ) ALONG THE LINES OF SIGHT OF VOYAGER
journal, March 2012


Model of the solar wind interaction with the local interstellar medium: Numerical solution of self-consistent problem
journal, January 1993

  • Baranov, V. B.; Malama, Yu. G.
  • Journal of Geophysical Research, Vol. 98, Issue A9
  • DOI: 10.1029/93JA01171

Interaction of the solar wind with the local interstellar medium
journal, November 1995

  • Pauls, H. L.; Zank, G. P.; Williams, L. L.
  • Journal of Geophysical Research: Space Physics, Vol. 100, Issue A11
  • DOI: 10.1029/95JA02023

Interaction of the solar wind with interstellar neutral hydrogen: Three-fluid model
journal, January 1986


Magnetic fields at the solar wind termination shock
journal, July 2008

  • Burlaga, L. F.; Ness, N. F.; Acuña, M. H.
  • Nature, Vol. 454, Issue 7200
  • DOI: 10.1038/nature07029

κ -distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen
journal, March 2015

  • Heerikhuisen, J.; Zirnstein, Eric; Pogorelov, Nikolai
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 3
  • DOI: 10.1002/2014JA020636

Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks
journal, January 1996

  • Zank, G. P.; Pauls, H. L.; Cairns, I. H.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A1
  • DOI: 10.1029/95JA02860

Simulation of the heliosphere: Model
journal, February 1998

  • McNutt, R. L.; Lyon, John; Goodrich, Charles C.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A2
  • DOI: 10.1029/97JA02143

Realistic and time-varying outer heliospheric modelling: Realistic outer heliospheric modelling
journal, July 2011


Heliospheric Structure: the bow wave and the Hydrogen wall
journal, December 2012


Microstructure of the Heliospheric Termination Shock: Implications for Energetic Neutral atom Observations
journal, December 2009


Interaction of the Solar wind with the Local Interstellar Medium
conference, June 2018


On the flux and the energy spectrum of interstellar ions in the solar system
journal, March 1976


Direction of the interstellar H atom inflow in the heliosphere: Role of the interstellar magnetic field
journal, June 2005


Faltering Steps Into the Galaxy: The Boundary Regions of the Heliosphere
journal, August 2015


The Pickup Ion-mediated Solar Wind
journal, December 2018


Local interstellar medium
journal, January 1987

  • Bochkarev, Nikolai G.
  • Astrophysics and Space Science, Vol. 138, Issue 2
  • DOI: 10.1007/bf00637850

Pickup Ion Effect of the Solar Wind Interaction with the Local Interstellar Medium
journal, November 2016


Charge-exchange source terms in magnetohydrodynamic plasmas
journal, May 2017


LOCAL INTERSTELLAR MAGNETIC FIELD DETERMINED FROM THE INTERSTELLAR BOUNDARY EXPLORER RIBBON
journal, February 2016


Pickup Ion Effect of the Solar Wind Interaction with the Local Interstellar Medium
text, January 2016


Seven Years of Imaging the Global Heliosphere with IBEX
text, January 2017


Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma
text, January 2005


Works referencing / citing this record:

Interstellar Neutral Helium in the Heliosphere from IBEX Observations. VI. The He + Density and the Ionization State in the Very Local Interstellar Matter
journal, September 2019


Suprathermal plasma distribution functions with relativistic cut-offs
journal, December 2019

  • Fahr, H-J; Heyl, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 491, Issue 3
  • DOI: 10.1093/mnras/stz3279