DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diversion of Catalytic C–N Bond Formation to Catalytic Oxidation of NH3 through Modification of the Hydrogen Atom Abstractor

Abstract

We report that (TMP)Ru(NH3)2 (TMP = tetramesitylporphryin) is a molecular catalyst for oxidation of ammonia to dinitrogen. An aryloxy radical, tri-tert-butylphenoxyl (ArO•) abstracts H atoms from a bound ammonia ligand of (TMP)Ru(NH3)2, leading to the discovery of a new catalytic C-N coupling to the para position of ArO•, forming 4-amino-2,4,6-tri-tert-butylcyclohexa-2,5-dien-1-one. Modification of the aryloxy radical to contain a trityl group at the para position, 2,6-di-tert-butyl-4-tritylphenoxyl radical, prevents C-N coupling and diverts the reaction to catalytic oxidation of ammonia to give N2. We achieve 125(±5) turnovers at 22 °C for oxidation of NH3, the highest reported to date for a molecular catalyst.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Univ. of Washington, Seattle, WA (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1605349
Report Number(s):
PNNL-SA-150204
Journal ID: ISSN 0002-7863
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 142; Journal Issue: 7; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; ammonia; catalysis; hydrogen atom transfer

Citation Formats

Dunn, Peter L., Johnson, Samantha I., Kaminsky, Werner, and Bullock, R. Morris. Diversion of Catalytic C–N Bond Formation to Catalytic Oxidation of NH3 through Modification of the Hydrogen Atom Abstractor. United States: N. p., 2020. Web. doi:10.1021/jacs.9b13706.
Dunn, Peter L., Johnson, Samantha I., Kaminsky, Werner, & Bullock, R. Morris. Diversion of Catalytic C–N Bond Formation to Catalytic Oxidation of NH3 through Modification of the Hydrogen Atom Abstractor. United States. https://doi.org/10.1021/jacs.9b13706
Dunn, Peter L., Johnson, Samantha I., Kaminsky, Werner, and Bullock, R. Morris. Sat . "Diversion of Catalytic C–N Bond Formation to Catalytic Oxidation of NH3 through Modification of the Hydrogen Atom Abstractor". United States. https://doi.org/10.1021/jacs.9b13706. https://www.osti.gov/servlets/purl/1605349.
@article{osti_1605349,
title = {Diversion of Catalytic C–N Bond Formation to Catalytic Oxidation of NH3 through Modification of the Hydrogen Atom Abstractor},
author = {Dunn, Peter L. and Johnson, Samantha I. and Kaminsky, Werner and Bullock, R. Morris},
abstractNote = {We report that (TMP)Ru(NH3)2 (TMP = tetramesitylporphryin) is a molecular catalyst for oxidation of ammonia to dinitrogen. An aryloxy radical, tri-tert-butylphenoxyl (ArO•) abstracts H atoms from a bound ammonia ligand of (TMP)Ru(NH3)2, leading to the discovery of a new catalytic C-N coupling to the para position of ArO•, forming 4-amino-2,4,6-tri-tert-butylcyclohexa-2,5-dien-1-one. Modification of the aryloxy radical to contain a trityl group at the para position, 2,6-di-tert-butyl-4-tritylphenoxyl radical, prevents C-N coupling and diverts the reaction to catalytic oxidation of ammonia to give N2. We achieve 125(±5) turnovers at 22 °C for oxidation of NH3, the highest reported to date for a molecular catalyst.},
doi = {10.1021/jacs.9b13706},
journal = {Journal of the American Chemical Society},
number = 7,
volume = 142,
place = {United States},
year = {Sat Feb 01 00:00:00 EST 2020},
month = {Sat Feb 01 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Beyond fossil fuel–driven nitrogen transformations
journal, May 2018

  • Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.
  • Science, Vol. 360, Issue 6391
  • DOI: 10.1126/science.aar6611

Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition
journal, January 2012

  • Schüth, F.; Palkovits, R.; Schlögl, R.
  • Energy Environ. Sci., Vol. 5, Issue 4
  • DOI: 10.1039/C2EE02865D

Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysis
journal, June 2016

  • Grinberg Dana, Alon; Elishav, Oren; Bardow, André
  • Angewandte Chemie International Edition, Vol. 55, Issue 31
  • DOI: 10.1002/anie.201510618

An Efficient Direct Ammonia Fuel Cell for Affordable Carbon-Neutral Transportation
journal, October 2019


Carbon-free energy: a review of ammonia- and hydrazine-based electrochemical fuel cells
journal, January 2011

  • Rees, Neil V.; Compton, Richard G.
  • Energy & Environmental Science, Vol. 4, Issue 4
  • DOI: 10.1039/c0ee00809e

Ammonia-fed fuel cells: a comprehensive review
journal, July 2016

  • Afif, Ahmed; Radenahmad, Nikdalila; Cheok, Quentin
  • Renewable and Sustainable Energy Reviews, Vol. 60
  • DOI: 10.1016/j.rser.2016.01.120

Electrolysis of liquid ammonia for hydrogen generation
journal, January 2015

  • Little, Daniel J.; Smith, III, Milton R.; Hamann, Thomas W.
  • Energy & Environmental Science, Vol. 8, Issue 9
  • DOI: 10.1039/C5EE01840D

As Precious as Platinum: Iron Nitride for Electrocatalytic Oxidation of Liquid Ammonia
journal, May 2017

  • Little, Daniel J.; Edwards, Dillon O.; Smith, Milton R.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 19
  • DOI: 10.1021/acsami.7b02639

Hydrogen Production from Ammonia Using Sodium Amide
journal, June 2014

  • David, William I. F.; Makepeace, Joshua W.; Callear, Samantha K.
  • Journal of the American Chemical Society, Vol. 136, Issue 38
  • DOI: 10.1021/ja5042836

Review—Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells
journal, January 2018

  • Adli, Nadia Mohd; Zhang, Hao; Mukherjee, Shreya
  • Journal of The Electrochemical Society, Vol. 165, Issue 15
  • DOI: 10.1149/2.0191815jes

Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications
journal, December 2010

  • Warren, Jeffrey J.; Tronic, Tristan A.; Mayer, James M.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr100085k

Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex
journal, February 2005


Synthesis and Ligand Modification Chemistry of a Molybdenum Dinitrogen Complex: Redox and Chemical Activity of a Bis(imino)pyridine Ligand
journal, October 2014

  • Margulieux, Grant W.; Turner, Zoë R.; Chirik, Paul J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 51
  • DOI: 10.1002/anie.201408725

Activation of Water, Ammonia, and Other Small Molecules by PC carbene P Nickel Pincer Complexes
journal, July 2013

  • Gutsulyak, Dmitry V.; Piers, Warren E.; Borau-Garcia, Javier
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja406742n

Addition of Ammonia, Water, and Dihydrogen Across a Single Pd−Pd Bond
journal, August 2007

  • Fafard, Claudia M.; Adhikari, Debashis; Foxman, Bruce M.
  • Journal of the American Chemical Society, Vol. 129, Issue 34
  • DOI: 10.1021/ja0731571

Interconversion of Molybdenum Imido and Amido Complexes by Proton-Coupled Electron Transfer
journal, January 2018


Coordination-induced weakening of ammonia, water, and hydrazine X–H bonds in a molybdenum complex
journal, November 2016


Homolytic N–H Activation of Ammonia: Hydrogen Transfer of Parent Iridium Ammine, Amide, Imide, and Nitride Species
journal, July 2015


Ammonia Activation, H 2 Evolution and Nitride Formation from a Molybdenum Complex with a Chemically and Redox Noninnocent Ligand
journal, April 2017

  • Margulieux, Grant W.; Bezdek, Máté J.; Turner, Zoë R.
  • Journal of the American Chemical Society, Vol. 139, Issue 17
  • DOI: 10.1021/jacs.7b03070

Substitution-induced nitrogen-nitrogen coupling for nitride coordinated to osmium(VI)
journal, November 1991

  • Ware, David C.; Taube, Henry.
  • Inorganic Chemistry, Vol. 30, Issue 24
  • DOI: 10.1021/ic00024a029

Oxidation of pentaamminecarbonylosmium(2+) to .mu.-dinitrogen-bis(cis-tetraamminecarbonylosmium)(4+)
journal, August 1979


Highly Electrophilic (Salen)ruthenium(VI) Nitrido Complexes
journal, January 2004

  • Man, Wai-Lun; Tang, Tsz-Man; Wong, Tsz-Wing
  • Journal of the American Chemical Society, Vol. 126, Issue 2
  • DOI: 10.1021/ja037899f

Dinitrogen Formation by Oxidative Intramolecular N---N Coupling in cis,cis- [(bpy) 2 (NH 3 )RuORu(NH 3 )(bpy) 2 ] 4+
journal, March 2003

  • Ishitani, Osamu; Ando, Emiko; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 42, Issue 5
  • DOI: 10.1021/ic026096a

Oxidation of coordinated ammonia to nitrate
journal, September 1981

  • Thompson, Mark S.; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 103, Issue 18
  • DOI: 10.1021/ja00408a054

Formation of Dinitrogen by Oxidation of [(bpy) 2 (NH 3 )RuORu(NH 3 )(bpy) 2 ] 4+
journal, January 1996

  • Ishitani, Osamu; White, Peter S.; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 35, Issue 8
  • DOI: 10.1021/ic9512643

Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction
journal, June 2019

  • Bhattacharya, Papri; Heiden, Zachariah M.; Chambers, Geoffrey M.
  • Angewandte Chemie International Edition, Vol. 58, Issue 34
  • DOI: 10.1002/anie.201903221

Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen
journal, July 2019


Homogeneous electrocatalytic oxidation of ammonia to N 2 under mild conditions
journal, January 2019

  • Habibzadeh, Faezeh; Miller, Susanne L.; Hamann, Thomas W.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 8
  • DOI: 10.1073/pnas.1813368116

Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst
journal, September 2019

  • Zott, Michael D.; Garrido-Barros, Pablo; Peters, Jonas C.
  • ACS Catalysis, Vol. 9, Issue 11
  • DOI: 10.1021/acscatal.9b03499

Co(salophen)-Catalyzed Aerobic Oxidation of p -Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis
journal, March 2016

  • Anson, Colin W.; Ghosh, Soumya; Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00254

The first crystal structure of a monomeric phenoxyl radical: 2,4,6-tri-tert-butylphenoxyl radical
journal, January 2008

  • Manner, Virginia W.; Markle, Todd F.; Freudenthal, John H.
  • Chem. Commun., Issue 2
  • DOI: 10.1039/B712872J

Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH 3 Complex
journal, February 2017

  • Bhattacharya, Papri; Heiden, Zachariah M.; Wiedner, Eric S.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00002

Design and reactivity of pentapyridyl metal complexes for ammonia oxidation
journal, January 2019

  • Johnson, Samantha I.; Heins, Spencer P.; Klug, Christina M.
  • Chemical Communications, Vol. 55, Issue 35
  • DOI: 10.1039/C9CC01249D

A stable dinitrogen complex of a ruthenium cofacial diporphyrin
journal, October 1992

  • Collman, James P.; Hutchison, James E.; Lopez, Michel Angel
  • Journal of the American Chemical Society, Vol. 114, Issue 21
  • DOI: 10.1021/ja00047a015

Nitrido Ruthenium Porphyrins: Synthesis, Characterization, and Amination Reactions with Hydrocarbon or Silyl Enol Ethers
journal, January 2003

  • Leung, Sarana Ka-Yan; Huang, Jie-Sheng; Liang, Jiang-Lin
  • Angewandte Chemie International Edition, Vol. 42, Issue 3
  • DOI: 10.1002/anie.200390111

Palladium-Catalyzed Coupling of Ammonia and Lithium Amide with Aryl Halides
journal, August 2006

  • Shen, Qilong; Hartwig, John F.
  • Journal of the American Chemical Society, Vol. 128, Issue 31
  • DOI: 10.1021/ja064005t

Selective Palladium-Catalyzed Arylation of Ammonia:  Synthesis of Anilines as Well as Symmetrical and Unsymmetrical Di- and Triarylamines
journal, August 2007

  • Surry, David S.; Buchwald, Stephen L.
  • Journal of the American Chemical Society, Vol. 129, Issue 34
  • DOI: 10.1021/ja074681a

Oxydation d'Amines Aromatiques Primaires en Présence du Radical Tritertiobutyl-2,4,6 Phénoxyle
journal, January 1987

  • Hedoyatullah, Mir; Thevenet, Francis
  • Bulletin des Sociétés Chimiques Belges, Vol. 96, Issue 4
  • DOI: 10.1002/bscb.19870960407

Complexes with Nitrogen-Centered Radical Ligands: Classification, Spectroscopic Features, Reactivity, and Catalytic Applications
journal, November 2013

  • Suarez, Alma I. Olivos; Lyaskovskyy, Volodymyr; Reek, Joost N. H.
  • Angewandte Chemie International Edition, Vol. 52, Issue 48
  • DOI: 10.1002/anie.201301487

Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric–Superoxo Complex
journal, July 2014

  • Lee, Jung Yoon; Peterson, Ryan L.; Ohkubo, Kei
  • Journal of the American Chemical Society, Vol. 136, Issue 28
  • DOI: 10.1021/ja503105b

Synthesis, Radical Reactivity, and Thermochemistry of Monomeric Cu(II) Alkoxide Complexes Relevant to Cu/Radical Alcohol Oxidation Catalysis
journal, May 2016


Preparation, Structural Characterization, and Thermochemistry of an Isolable 4-Arylphenoxyl Radical
journal, September 2014

  • Porter, Thomas R.; Kaminsky, Werner; Mayer, James M.
  • The Journal of Organic Chemistry, Vol. 79, Issue 20
  • DOI: 10.1021/jo501531a

Cationic Charges Leading to an Inverse Free-Energy Relationship for N−N Bond Formation by Mn VI Nitrides
journal, October 2018

  • Chantarojsiri, Teera; Reath, Alexander H.; Yang, Jenny Y.
  • Angewandte Chemie International Edition, Vol. 57, Issue 43
  • DOI: 10.1002/anie.201805832

Facile N···N Coupling of Manganese(V) Imido Species
journal, January 2007

  • Yiu, Shek-Man; Lam, William W. Y.; Ho, Chi-Ming
  • Journal of the American Chemical Society, Vol. 129, Issue 4
  • DOI: 10.1021/ja066440t

Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex
journal, August 2017

  • Keener, Megan; Peterson, Madeline; Hernández Sánchez, Raúl
  • Chemistry - A European Journal, Vol. 23, Issue 48
  • DOI: 10.1002/chem.201703153

Tuning Electronic Structure To Control Manganese Nitride Activation
journal, November 2016

  • Clarke, Ryan M.; Storr, Tim
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b09576

Computational Mechanistic Study of Electro-Oxidation of Ammonia to N 2 by Homogenous Ruthenium and Iron Complexes
journal, August 2019

  • Najafian, Ahmad; Cundari, Thomas R.
  • The Journal of Physical Chemistry A, Vol. 123, Issue 37
  • DOI: 10.1021/acs.jpca.9b05908

Ruthenium(II) Porphyrin Quinoid Carbene Complexes: Synthesis, Crystal Structure, and Reactivity toward Carbene Transfer and Hydrogen Atom Transfer Reactions
journal, May 2019

  • Wang, Hai-Xu; Wan, Qingyun; Wu, Kai
  • Journal of the American Chemical Society, Vol. 141, Issue 22
  • DOI: 10.1021/jacs.9b03357

Elevated Catalytic Activity of Ruthenium(II)-Porphyrin-Catalyzed Carbene/Nitrene Transfer and Insertion Reactions with N-Heterocyclic Carbene Ligands
journal, February 2014

  • Chan, Ka-Ho; Guan, Xiangguo; Lo, Vanessa Kar-Yan
  • Angewandte Chemie International Edition, Vol. 53, Issue 11
  • DOI: 10.1002/anie.201309888

Isocyanide ligation at ruthenium(II) complexes with chelating tertiary amine and porphyrin ligands. Structural and electrochemical studies
journal, January 2000


Ruthenium Porphyrins with Axial π-Conjugated Arylamide and Arylimide Ligands
journal, July 2014

  • Law, Siu-Man; Chen, Daqing; Chan, Sharon Lai-Fung
  • Chemistry - A European Journal, Vol. 20, Issue 35
  • DOI: 10.1002/chem.201305084