skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Critical Review of Machine Learning of Energy Materials

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Department of NanoEngineeringUniversity of California San Diego 9500 Gilman Dr, Mail Code 0448 La Jolla CA 92093‐0448 USA
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1595872
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 10 Journal Issue: 8; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Chen, Chi, Zuo, Yunxing, Ye, Weike, Li, Xiangguo, Deng, Zhi, and Ong, Shyue Ping. A Critical Review of Machine Learning of Energy Materials. Germany: N. p., 2020. Web. doi:10.1002/aenm.201903242.
Chen, Chi, Zuo, Yunxing, Ye, Weike, Li, Xiangguo, Deng, Zhi, & Ong, Shyue Ping. A Critical Review of Machine Learning of Energy Materials. Germany. doi:10.1002/aenm.201903242.
Chen, Chi, Zuo, Yunxing, Ye, Weike, Li, Xiangguo, Deng, Zhi, and Ong, Shyue Ping. Wed . "A Critical Review of Machine Learning of Energy Materials". Germany. doi:10.1002/aenm.201903242.
@article{osti_1595872,
title = {A Critical Review of Machine Learning of Energy Materials},
author = {Chen, Chi and Zuo, Yunxing and Ye, Weike and Li, Xiangguo and Deng, Zhi and Ong, Shyue Ping},
abstractNote = {},
doi = {10.1002/aenm.201903242},
journal = {Advanced Energy Materials},
number = 8,
volume = 10,
place = {Germany},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/aenm.201903242

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

“Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors
journal, September 2019


Double-slit photoelectron interference in strong-field ionization of the neon dimer
journal, January 2019


CALYPSO: A method for crystal structure prediction
journal, October 2012


Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients
journal, October 2018

  • Madsen, Georg K. H.; Carrete, Jesús; Verstraete, Matthieu J.
  • Computer Physics Communications, Vol. 231
  • DOI: 10.1016/j.cpc.2018.05.010

New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships
journal, April 2016

  • Jain, Anubhav; Hautier, Geoffroy; Ong, Shyue Ping
  • Journal of Materials Research, Vol. 31, Issue 8
  • DOI: 10.1557/jmr.2016.80

The Principles Determining the Structure of Complex Ionic Crystals
journal, April 1929

  • Pauling, Linus
  • Journal of the American Chemical Society, Vol. 51, Issue 4
  • DOI: 10.1021/ja01379a006

Accelerated Discovery of Large Electrostrains in BaTiO 3 -Based Piezoelectrics Using Active Learning
journal, January 2018

  • Yuan, Ruihao; Liu, Zhen; Balachandran, Prasanna V.
  • Advanced Materials, Vol. 30, Issue 7
  • DOI: 10.1002/adma.201702884

Amp: A modular approach to machine learning in atomistic simulations
journal, October 2016


Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Machine learning for heterogeneous catalyst design and discovery
journal, May 2018

  • Goldsmith, Bryan R.; Esterhuizen, Jacques; Liu, Jin-Xun
  • AIChE Journal, Vol. 64, Issue 7
  • DOI: 10.1002/aic.16198

The metallization and superconductivity of dense hydrogen sulfide
journal, May 2014

  • Li, Yinwei; Hao, Jian; Liu, Hanyu
  • The Journal of Chemical Physics, Vol. 140, Issue 17
  • DOI: 10.1063/1.4874158

Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

Structure and structural evolution of () clusters using a genetic algorithm and density functional theory method
journal, October 2007


Machine learning in catalysis
journal, April 2018


Data-driven exploration of new pressure-induced superconductivity in PbBi 2 Te 4
journal, August 2018

  • Matsumoto, Ryo; Hou, Zhufeng; Nagao, Masanori
  • Science and Technology of Advanced Materials, Vol. 19, Issue 1
  • DOI: 10.1080/14686996.2018.1548885

The geometric blueprint of perovskites
journal, May 2018

  • Filip, Marina R.; Giustino, Feliciano
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 21
  • DOI: 10.1073/pnas.1719179115

Deep neural networks for accurate predictions of crystal stability
journal, September 2018


Formability of ABO3 perovskites
journal, June 2004


Machine learning of molecular electronic properties in chemical compound space
journal, September 2013


Understanding band gaps of solids in generalized Kohn–Sham theory
journal, March 2017

  • Perdew, John P.; Yang, Weitao; Burke, Kieron
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 11
  • DOI: 10.1073/pnas.1621352114

Extrapolating Energetics on Clusters and Single-Crystal Surfaces to Nanoparticles by Machine-Learning Scheme
journal, November 2017

  • Jinnouchi, Ryosuke; Hirata, Hirohito; Asahi, Ryoji
  • The Journal of Physical Chemistry C, Vol. 121, Issue 47
  • DOI: 10.1021/acs.jpcc.7b08686

An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks
journal, January 2014

  • Jalem, Randy; Nakayama, Masanobu; Kasuga, Toshihiro
  • J. Mater. Chem. A, Vol. 2, Issue 3
  • DOI: 10.1039/C3TA13235H

Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
journal, January 2016

  • Shapeev, Alexander V.
  • Multiscale Modeling & Simulation, Vol. 14, Issue 3
  • DOI: 10.1137/15M1054183

Transferable Machine-Learning Model of the Electron Density
journal, December 2018


Density functional theory in surface chemistry and catalysis
journal, January 2011

  • Norskov, J. K.; Abild-Pedersen, F.; Studt, F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 3
  • DOI: 10.1073/pnas.1006652108

The Inorganic Crystal Structure Database (ICSD)—Present and Future
journal, January 2004


Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis
journal, September 2019


Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
journal, December 2016


Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors
journal, July 2018

  • Sahu, Harikrishna; Rao, Weining; Troisi, Alessandro
  • Advanced Energy Materials, Vol. 8, Issue 24
  • DOI: 10.1002/aenm.201801032

Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures
journal, June 2018

  • Fujikake, So; Deringer, Volker L.; Lee, Tae Hoon
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5016317

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
journal, January 2018

  • Gómez-Bombarelli, Rafael; Wei, Jennifer N.; Duvenaud, David
  • ACS Central Science, Vol. 4, Issue 2
  • DOI: 10.1021/acscentsci.7b00572

Application of a neural network to the analysis of catalytic reactions Analysis of NO decomposition over Cu/ZSM-5 zeolite
journal, November 1995


Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Extending the accuracy of the SNAP interatomic potential form
journal, June 2018

  • Wood, Mitchell A.; Thompson, Aidan P.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017641

Identifying Active Sites for CO 2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations
journal, June 2019

  • Chen, Yalu; Huang, Yufeng; Cheng, Tao
  • Journal of the American Chemical Society, Vol. 141, Issue 29
  • DOI: 10.1021/jacs.9b04956

Random Forest:  A Classification and Regression Tool for Compound Classification and QSAR Modeling
journal, November 2003

  • Svetnik, Vladimir; Liaw, Andy; Tong, Christopher
  • Journal of Chemical Information and Computer Sciences, Vol. 43, Issue 6
  • DOI: 10.1021/ci034160g

Machine learning in electronic-quantum-matter imaging experiments
journal, June 2019


New tolerance factor to predict the stability of perovskite oxides and halides
journal, February 2019

  • Bartel, Christopher J.; Sutton, Christopher; Goldsmith, Bryan R.
  • Science Advances, Vol. 5, Issue 2
  • DOI: 10.1126/sciadv.aav0693

Accelerating the discovery of materials for clean energy in the era of smart automation
journal, April 2018

  • Tabor, Daniel P.; Roch, Loïc M.; Saikin, Semion K.
  • Nature Reviews Materials, Vol. 3, Issue 5
  • DOI: 10.1038/s41578-018-0005-z

Explicit representation of knowledge acquired from plant historical data using neural network
conference, January 1990


Neural network predictions of oxygen interactions on a dynamic Pd surface
journal, January 2017


Exploring materials band structure space with unsupervised machine learning
journal, February 2019


Deep elastic strain engineering of bandgap through machine learning
journal, February 2019

  • Shi, Zhe; Tsymbalov, Evgenii; Dao, Ming
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 10
  • DOI: 10.1073/pnas.1818555116

Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
journal, April 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00099

The Linus Pauling file (LPF) and its application to materials design
journal, September 1998


The GW method
journal, March 1998


Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Recent advances and applications of machine learning in solid-state materials science
journal, August 2019

  • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0221-0

Superconductivity at 250 K in lanthanum hydride under high pressures
journal, May 2019


High-throughput computational X-ray absorption spectroscopy
journal, July 2018


Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


A high-throughput infrastructure for density functional theory calculations
journal, June 2011


The Harvard organic photovoltaic dataset
journal, September 2016

  • Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.86

Chemical shifts in molecular solids by machine learning
journal, October 2018


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


The Protein Data Bank
journal, January 2000


Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles
journal, January 2019

  • Santos, Aldenor G.; da Rocha, Gisele O.; de Andrade, Jailson B.
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-018-37186-2

Neural network as a tool for catalyst development
journal, April 1995


Active learning of linearly parametrized interatomic potentials
journal, December 2017


Predictive analytics for crystalline materials: bulk modulus
journal, January 2016

  • Furmanchuk, Al'ona; Agrawal, Ankit; Choudhary, Alok
  • RSC Advances, Vol. 6, Issue 97
  • DOI: 10.1039/C6RA19284J

Chemical Pressure-Driven Enhancement of the Hydrogen Evolving Activity of Ni 2 P from Nonmetal Surface Doping Interpreted via Machine Learning
journal, March 2018

  • Wexler, Robert B.; Martirez, John Mark P.; Rappe, Andrew M.
  • Journal of the American Chemical Society, Vol. 140, Issue 13
  • DOI: 10.1021/jacs.8b00947

Symbolic regression in materials science
journal, June 2019

  • Wang, Yiqun; Wagner, Nicholas; Rondinelli, James M.
  • MRS Communications, Vol. 9, Issue 3
  • DOI: 10.1557/mrc.2019.85

Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy
journal, September 2018


From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown
journal, February 2016


Accurate force field for molybdenum by machine learning large materials data
journal, September 2017


Machine learning meets volcano plots: computational discovery of cross-coupling catalysts
journal, January 2018

  • Meyer, Benjamin; Sawatlon, Boodsarin; Heinen, Stefan
  • Chemical Science, Vol. 9, Issue 35
  • DOI: 10.1039/C8SC01949E

Unraveling the effect of La A-site substitution on oxygen ion diffusion and oxygen catalysis in perovskite BaFeO 3 by data-mining molecular dynamics and density functional theory
journal, January 2015

  • Chen, Chi; Baiyee, Zarah Medina; Ciucci, Francesco
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 37
  • DOI: 10.1039/C5CP03973H

Multi-objective Optimization for Materials Discovery via Adaptive Design
journal, February 2018

  • Gopakumar, Abhijith M.; Balachandran, Prasanna V.; Xue, Dezhen
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-21936-3

An open experimental database for exploring inorganic materials
journal, April 2018

  • Zakutayev, Andriy; Wunder, Nick; Schwarting, Marcus
  • Scientific Data, Vol. 5, Issue 1
  • DOI: 10.1038/sdata.2018.53

Extended-Connectivity Fingerprints
journal, April 2010

  • Rogers, David; Hahn, Mathew
  • Journal of Chemical Information and Modeling, Vol. 50, Issue 5
  • DOI: 10.1021/ci100050t

Deep learning for computational chemistry
journal, March 2017

  • Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav
  • Journal of Computational Chemistry, Vol. 38, Issue 16
  • DOI: 10.1002/jcc.24764

The emergence of perovskite solar cells
journal, July 2014

  • Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.
  • Nature Photonics, Vol. 8, Issue 7, p. 506-514
  • DOI: 10.1038/nphoton.2014.134

Charting the complete elastic properties of inorganic crystalline compounds
journal, March 2015

  • de Jong, Maarten; Chen, Wei; Angsten, Thomas
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.9

Active learning with non- ab initio input features toward efficient CO 2 reduction catalysts
journal, January 2018

  • Noh, Juhwan; Back, Seoin; Kim, Jaehoon
  • Chemical Science, Vol. 9, Issue 23
  • DOI: 10.1039/C7SC03422A

PZT phase diagram determination by measurement of elastic moduli
journal, August 2005


FireWorks: a dynamic workflow system designed for high-throughput applications: FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications
journal, May 2015

  • Jain, Anubhav; Ong, Shyue Ping; Chen, Wei
  • Concurrency and Computation: Practice and Experience, Vol. 27, Issue 17
  • DOI: 10.1002/cpe.3505

Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach
journal, September 2017

  • Furmanchuk, Al'ona; Saal, James E.; Doak, Jeff W.
  • Journal of Computational Chemistry, Vol. 39, Issue 4
  • DOI: 10.1002/jcc.25067

Large Piezoelectric Effect in Pb-Free Ceramics
journal, December 2009


Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO 4 (Main Group M 2+ –X 5+ and M 3+ –X 4+ ) Compositions as Potential Solid Electrolytes
journal, March 2012

  • Jalem, Randy; Aoyama, Takahiro; Nakayama, Masanobu
  • Chemistry of Materials, Vol. 24, Issue 7
  • DOI: 10.1021/cm3000427

Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
journal, November 2015


Text mining assisted review of the literature on Li-O 2 batteries
journal, September 2019

  • Torayev, Amangeldi; Magusin, Pieter C. M. M.; Grey, Clare P.
  • Journal of Physics: Materials, Vol. 2, Issue 4
  • DOI: 10.1088/2515-7639/ab3611

Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Superconductivity in compressed lithium at 20 K
journal, October 2002

  • Shimizu, Katsuya; Ishikawa, Hiroto; Takao, Daigoroh
  • Nature, Vol. 419, Issue 6907
  • DOI: 10.1038/nature01098

Addressing uncertainty in atomistic machine learning
journal, January 2017

  • Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 18
  • DOI: 10.1039/C7CP00375G

Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces
journal, March 2015


Pairing in dense lithium
journal, July 1999

  • Neaton, J. B.; Ashcroft, N. W.
  • Nature, Vol. 400, Issue 6740
  • DOI: 10.1038/22067

XtalOpt: An open-source evolutionary algorithm for crystal structure prediction
journal, February 2011


Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
journal, April 2019


SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors
journal, January 2019

  • Chen, Haomin; Wong, Lee Loong; Adams, Stefan
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 75, Issue 1
  • DOI: 10.1107/S2052520618015718

SchNetPack: A Deep Learning Toolbox For Atomistic Systems
journal, November 2018

  • Schütt, K. T.; Kessel, P.; Gastegger, M.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00908

Formability of ABO3 cubic perovskites
journal, April 2008


Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches
journal, December 2017


Superconductivity in High-Pressure Metallic Phases of Si
journal, May 1985


Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Informatics-Aided Density Functional Theory Study on the Li Ion Transport of Tavorite-Type LiMTO 4 F (M 3+ –T 5+ , M 2+ –T 6+ )
journal, May 2015

  • Jalem, Randy; Kimura, Mayumi; Nakayama, Masanobu
  • Journal of Chemical Information and Modeling, Vol. 55, Issue 6
  • DOI: 10.1021/ci500752n

ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
journal, December 2018


Introduction:  Batteries and Fuel Cells
journal, October 2004

  • Whittingham, M. Stanley; Savinell, Robert F.; Zawodzinski, Thomas
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020705e

Automated generation and ensemble-learned matching of X-ray absorption spectra
journal, March 2018


Compressive sensing as a paradigm for building physics models
journal, January 2013


An acceleration search method of higher T c superconductors by a machine learning algorithm
journal, June 2019


Multilayer feedforward networks are universal approximators
journal, January 1989


Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations
journal, May 2013

  • Gaultois, Michael W.; Sparks, Taylor D.; Borg, Christopher K. H.
  • Chemistry of Materials, Vol. 25, Issue 15
  • DOI: 10.1021/cm400893e

Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
journal, August 2018


Classification of crystal structure using a convolutional neural network
journal, June 2017


Machine learning unifies the modeling of materials and molecules
journal, December 2017

  • Bartók, Albert P.; De, Sandip; Poelking, Carl
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.1701816

Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO 2 Reduction
journal, August 2017


Structural and electronic properties of the high-pressure hexagonal phases of Si
journal, November 1984


Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing
journal, August 2018


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Inhomogeneous Electron Gas
journal, November 1964


Self-consistent approximation to the Kohn-Sham exchange potential
journal, March 1995

  • Gritsenko, Oleg; van Leeuwen, Robert; van Lenthe, Erik
  • Physical Review A, Vol. 51, Issue 3
  • DOI: 10.1103/PhysRevA.51.1944

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learning
journal, September 2016

  • Ulissi, Zachary W.; Singh, Aayush R.; Tsai, Charlie
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 19
  • DOI: 10.1021/acs.jpclett.6b01254

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

AFLOW: An automatic framework for high-throughput materials discovery
journal, June 2012


High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds
journal, October 2016


AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


Prediction of thermal boundary resistance by the machine learning method
journal, August 2017


SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
journal, February 1988

  • Weininger, David
  • Journal of Chemical Information and Modeling, Vol. 28, Issue 1
  • DOI: 10.1021/ci00057a005

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Electron-phonon coupling in bcc and 9 R lithium
journal, November 1991


Adaptive Strategies for Materials Design using Uncertainties
journal, January 2016

  • Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19660

Data-driven discovery of formulas by symbolic regression
journal, July 2019

  • Sun, Sheng; Ouyang, Runhai; Zhang, Bochao
  • MRS Bulletin, Vol. 44, Issue 7
  • DOI: 10.1557/mrs.2019.156

The Cambridge Structural Database: a quarter of a million crystal structures and rising
journal, May 2002


Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures
journal, January 2019


Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity
journal, October 2016

  • Huang, Bing; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 145, Issue 16
  • DOI: 10.1063/1.4964627

Designing promising molecules for organic solar cells via machine learning assisted virtual screening
journal, January 2019

  • Sahu, Harikrishna; Yang, Feng; Ye, Xiaobo
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/C9TA04097H

Estimation of catalytic performance by neural network — product distribution in oxidative dehydrogenation of ethylbenzene
journal, July 1994


Demystifying Multitask Deep Neural Networks for Quantitative Structure–Activity Relationships
journal, October 2017

  • Xu, Yuting; Ma, Junshui; Liaw, Andy
  • Journal of Chemical Information and Modeling, Vol. 57, Issue 10
  • DOI: 10.1021/acs.jcim.7b00087

Machine-Learning-Assisted Development and Theoretical Consideration for the Al 2 Fe 3 Si 3 Thermoelectric Material
journal, March 2019

  • Hou, Zhufeng; Takagiwa, Yoshiki; Shinohara, Yoshikazu
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 12
  • DOI: 10.1021/acsami.9b02381

Machine learning based interatomic potential for amorphous carbon
journal, March 2017


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Ab initio theory of superconductivity. II. Application to elemental metals
journal, July 2005


A strategy to apply machine learning to small datasets in materials science
journal, May 2018


MoleculeNet: a benchmark for molecular machine learning
journal, January 2018

  • Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N.
  • Chemical Science, Vol. 9, Issue 2
  • DOI: 10.1039/C7SC02664A

970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13
journal, July 2009

  • Blum, Lorenz C.; Reymond, Jean-Louis
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja902302h

Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics
journal, March 2019

  • L. Agiorgousis, Michael; Sun, Yi‐Yang; Choe, Duk‐Hyun
  • Advanced Theory and Simulations, Vol. 2, Issue 5
  • DOI: 10.1002/adts.201800173

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles
journal, October 2017

  • Timoshenko, Janis; Lu, Deyu; Lin, Yuewei
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 20
  • DOI: 10.1021/acs.jpclett.7b02364

Classification of local chemical environments from x-ray absorption spectra using supervised machine learning
journal, March 2019


Machine-learning prediction of the d-band center for metals and bimetals
journal, January 2016

  • Takigawa, Ichigaku; Shimizu, Ken-ichi; Tsuda, Koji
  • RSC Advances, Vol. 6, Issue 58
  • DOI: 10.1039/C6RA04345C

Screened hybrid density functionals applied to solids
journal, April 2006

  • Paier, J.; Marsman, M.; Hummer, K.
  • The Journal of Chemical Physics, Vol. 124, Issue 15
  • DOI: 10.1063/1.2187006

Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows
journal, November 2017


Dissolving the Periodic Table in Cubic Zirconia: Data Mining to Discover Chemical Trends
journal, March 2014

  • Meredig, Bryce; Wolverton, C.
  • Chemistry of Materials, Vol. 26, Issue 6
  • DOI: 10.1021/cm403727z

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
journal, June 2017


Feature Selection Using Principal Component Analysis
conference, November 2010

  • Song, Fengxi; Guo, Zhongwei; Mei, Dayong
  • 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM)
  • DOI: 10.1109/ICSEM.2010.14

On representing chemical environments
journal, May 2013


Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm
journal, August 2017


Virtual Exploration of the Small-Molecule Chemical Universe below 160 Daltons
journal, February 2005

  • Fink, Tobias; Bruggesser, Heinz; Reymond, Jean-Louis
  • Angewandte Chemie International Edition, Vol. 44, Issue 10
  • DOI: 10.1002/anie.200462457

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
journal, October 2017

  • Faber, Felix A.; Hutchison, Luke; Huang, Bing
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00577

First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Accelerated search for BaTiO 3 -based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning
journal, November 2016

  • Xue, Dezhen; Balachandran, Prasanna V.; Yuan, Ruihao
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 47
  • DOI: 10.1073/pnas.1607412113

Machine-Learning-Augmented Chemisorption Model for CO 2 Electroreduction Catalyst Screening
journal, August 2015

  • Ma, Xianfeng; Li, Zheng; Achenie, Luke E. K.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 18
  • DOI: 10.1021/acs.jpclett.5b01660

Resolution of the Band Gap Prediction Problem for Materials Design
journal, March 2016

  • Crowley, Jason M.; Tahir-Kheli, Jamil; Goddard, William A.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 7
  • DOI: 10.1021/acs.jpclett.5b02870

Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency
journal, March 2006

  • Scharber, M. C.; Mühlbacher, D.; Koppe, M.
  • Advanced Materials, Vol. 18, Issue 6, p. 789-794
  • DOI: 10.1002/adma.200501717

CRYSTMET: a database of the structures and powder patterns of metals and intermetallics
journal, May 2002

  • White, Peter S.; Rodgers, John R.; Le Page, Yvon
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102002902

A RESTful API for exchanging materials data in the AFLOWLIB.org consortium
journal, October 2014


SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries
journal, March 2016

  • Deng, Zhi; Mo, Yifei; Ong, Shyue Ping
  • NPG Asia Materials, Vol. 8, Issue 3
  • DOI: 10.1038/am.2016.7

Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms
journal, May 2018

  • Choudhary, Kamal; Zhang, Qin; Reid, Andrew C. E.
  • Scientific Data, Vol. 5, Issue 1
  • DOI: 10.1038/sdata.2018.82

Materials discovery and design using machine learning
journal, September 2017


Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning
journal, October 2017


Predicting electron-phonon coupling constants of superconducting elements by machine learning
journal, March 2019


From the computer to the laboratory: materials discovery and design using first-principles calculations
journal, May 2012

  • Hautier, Geoffroy; Jain, Anubhav; Ong, Shyue Ping
  • Journal of Materials Science, Vol. 47, Issue 21
  • DOI: 10.1007/s10853-012-6424-0

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Heterogeneous catalyst discovery using 21st century tools: a tutorial
journal, January 2014


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Machine learning of optical properties of materials – predicting spectra from images and images from spectra
journal, January 2019

  • Stein, Helge S.; Guevarra, Dan; Newhouse, Paul F.
  • Chemical Science, Vol. 10, Issue 1
  • DOI: 10.1039/C8SC03077D

Molecular graph convolutions: moving beyond fingerprints
journal, August 2016

  • Kearnes, Steven; McCloskey, Kevin; Berndl, Marc
  • Journal of Computer-Aided Molecular Design, Vol. 30, Issue 8
  • DOI: 10.1007/s10822-016-9938-8

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature
journal, October 2016

  • Swain, Matthew C.; Cole, Jacqueline M.
  • Journal of Chemical Information and Modeling, Vol. 56, Issue 10
  • DOI: 10.1021/acs.jcim.6b00207

Adsorption of CO on Low-Energy, Low-Symmetry Pt Nanoparticles: Energy Decomposition Analysis and Prediction via Machine-Learning Models
journal, March 2017

  • Gasper, Raymond; Shi, Hongbo; Ramasubramaniam, Ashwin
  • The Journal of Physical Chemistry C, Vol. 121, Issue 10
  • DOI: 10.1021/acs.jpcc.6b12800

Superconductivity gets an iron boost
journal, March 2010


The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


Accelerated search for materials with targeted properties by adaptive design
journal, April 2016

  • Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11241

The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid
journal, August 2011

  • Hachmann, Johannes; Olivares-Amaya, Roberto; Atahan-Evrenk, Sule
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 17
  • DOI: 10.1021/jz200866s

Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials
journal, January 2017

  • Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02697D

Matminer: An open source toolkit for materials data mining
journal, September 2018


The Computational Materials Repository
journal, November 2012

  • Landis, David D.; Hummelshoj, Jens S.; Nestorov, Svetlozar
  • Computing in Science & Engineering, Vol. 14, Issue 6
  • DOI: 10.1109/MCSE.2012.16

Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics
journal, December 2017


A Community Contribution Framework for Sharing Materials Data with Materials Project
conference, August 2015

  • Huck, Patrick; Jain, Anubhav; Gunter, Dan
  • 2015 IEEE 11th International Conference on e-Science (e-Science)
  • DOI: 10.1109/eScience.2015.75

Machine learning with force-field-inspired descriptors for materials: Fast screening and mapping energy landscape
journal, August 2018


Application of Artificial Neural Networks for Catalysis: A Review
journal, October 2017


Identifying Pb-free perovskites for solar cells by machine learning
journal, March 2019


Finding New Perovskite Halides via Machine Learning
journal, April 2016

  • Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho
  • Frontiers in Materials, Vol. 3
  • DOI: 10.3389/fmats.2016.00019

Multi-fidelity machine learning models for accurate bandgap predictions of solids
journal, March 2017


Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17
journal, November 2012

  • Ruddigkeit, Lars; van Deursen, Ruud; Blum, Lorenz C.
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 11
  • DOI: 10.1021/ci300415d

SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates
journal, August 2018


Combining electronic and structural features in machine learning models to predict organic solar cells properties
journal, January 2019

  • Padula, Daniele; Simpson, Jack D.; Troisi, Alessandro
  • Materials Horizons, Vol. 6, Issue 2
  • DOI: 10.1039/C8MH01135D

Hierarchical visualization of materials space with graph convolutional neural networks
journal, November 2018

  • Xie, Tian; Grossman, Jeffrey C.
  • The Journal of Chemical Physics, Vol. 149, Issue 17
  • DOI: 10.1063/1.5047803

Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties
journal, May 2016

  • Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4952607

Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms
journal, April 2013

  • Fujimura, Koji; Seko, Atsuto; Koyama, Yukinori
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300060

Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods
journal, July 2019


An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
journal, March 2016


PubChem Substance and Compound databases
journal, September 2015

  • Kim, Sunghwan; Thiessen, Paul A.; Bolton, Evan E.
  • Nucleic Acids Research, Vol. 44, Issue D1
  • DOI: 10.1093/nar/gkv951

Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Gradient-based learning applied to document recognition
journal, January 1998

  • Lecun, Y.; Bottou, L.; Bengio, Y.
  • Proceedings of the IEEE, Vol. 86, Issue 11
  • DOI: 10.1109/5.726791

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods
journal, August 2017

  • Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise
  • The Journal of Physical Chemistry B, Vol. 122, Issue 2
  • DOI: 10.1021/acs.jpcb.7b05296

Thermodynamic Stability Trend of Cubic Perovskites
journal, October 2017

  • Sun, Qingde; Yin, Wan-Jian
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b09379

Deep Learning in Chemistry
journal, May 2019

  • Mater, Adam C.; Coote, Michelle L.
  • Journal of Chemical Information and Modeling, Vol. 59, Issue 6
  • DOI: 10.1021/acs.jcim.9b00266

Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals
journal, September 2018


Machine Learning for Computational Heterogeneous Catalysis
journal, June 2019

  • Schlexer Lamoureux, Philomena; Winther, Kirsten T.; Garrido Torres, Jose Antonio
  • ChemCatChem, Vol. 11, Issue 16
  • DOI: 10.1002/cctc.201900595

To address surface reaction network complexity using scaling relations machine learning and DFT calculations
journal, March 2017

  • Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14621

Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
journal, April 2018


Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
journal, April 2018


Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints
journal, January 2015

  • Isayev, Olexandr; Fourches, Denis; Muratov, Eugene N.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm503507h

Machine learning for molecular and materials science
journal, July 2018


Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts
journal, July 2019

  • Back, Seoin; Yoon, Junwoong; Tian, Nianhan
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 15
  • DOI: 10.1021/acs.jpclett.9b01428

Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning
journal, February 2011

  • Balachandran, Prasanna V.; Broderick, Scott R.; Rajan, Krishna
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 467, Issue 2132
  • DOI: 10.1098/rspa.2010.0543

Theory-Guided Machine Learning in Materials Science
journal, June 2016


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Information Retrieval and Text Mining Technologies for Chemistry
journal, May 2017


A molecular dynamics study of oxygen ion diffusion in A-site ordered perovskite PrBaCo 2 O 5.5 : data mining the oxygen trajectories
journal, January 2015

  • Chen, Chi; Chen, Dengjie; Ciucci, Francesco
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05847J

Identifying an efficient, thermally robust inorganic phosphor host via machine learning
journal, October 2018


Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
journal, August 2018


A Universal 3D Voxel Descriptor for Solid-State Material Informatics with Deep Convolutional Neural Networks
journal, December 2017


The Chemical Space Project
journal, February 2015

  • Reymond, Jean-Louis
  • Accounts of Chemical Research, Vol. 48, Issue 3
  • DOI: 10.1021/ar500432k

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05720A

Dynamics and superconductivity in compressed lanthanum superhydride
journal, September 2018


Performance of some variable selection methods when multicollinearity is present
journal, July 2005


The inorganic crystal structure data base
journal, May 1983

  • Bergerhoff, G.; Hundt, R.; Sievers, R.
  • Journal of Chemical Information and Modeling, Vol. 23, Issue 2
  • DOI: 10.1021/ci00038a003

From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019

  • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
  • Journal of Physics: Materials, Vol. 2, Issue 3
  • DOI: 10.1088/2515-7639/ab084b

High-throughput screening of bimetallic catalysts enabled by machine learning
journal, January 2017

  • Li, Zheng; Wang, Siwen; Chin, Wei Shan
  • Journal of Materials Chemistry A, Vol. 5, Issue 46
  • DOI: 10.1039/C7TA01812F

Unsupervised word embeddings capture latent knowledge from materials science literature
journal, July 2019


Big–deep–smart data in imaging for guiding materials design
journal, September 2015

  • Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4395

Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
journal, January 2011

  • Ong, Shyue Ping; Chevrier, Vincent L.; Hautier, Geoffroy
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01782a

Automated estimation of materials parameter from X-ray absorption and electron energy-loss spectra with similarity measures
journal, March 2019


Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries
journal, April 2019

  • Joshi, Rajendra P.; Eickholt, Jesse; Li, Liling
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 20
  • DOI: 10.1021/acsami.9b04933

Machine Learning and Its Applications to Biology
journal, January 2007


AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


Crystallographic Information Resources
journal, November 2015


Mastering the game of Go without human knowledge
journal, October 2017

  • Silver, David; Schrittwieser, Julian; Simonyan, Karen
  • Nature, Vol. 550, Issue 7676
  • DOI: 10.1038/nature24270

Crystallography Open Database – an open-access collection of crystal structures
journal, May 2009

  • Gražulis, Saulius; Chateigner, Daniel; Downs, Robert T.
  • Journal of Applied Crystallography, Vol. 42, Issue 4
  • DOI: 10.1107/S0021889809016690

Data‐Driven Materials Exploration for Li‐Ion Conductive Ceramics by Exhaustive and Informatics‐Aided Computations
journal, November 2018

  • Nakayama, Masanobu; Kanamori, Kenta; Nakano, Koki
  • The Chemical Record, Vol. 19, Issue 4
  • DOI: 10.1002/tcr.201800129

Materials science with large-scale data and informatics: Unlocking new opportunities
journal, May 2016

  • Hill, Joanne; Mulholland, Gregory; Persson, Kristin
  • MRS Bulletin, Vol. 41, Issue 5
  • DOI: 10.1557/mrs.2016.93

Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
journal, July 2017


Estimation of Superconducting Transition Temperature T C for Superconductors of the Doped MgB2 System from the Crystal Lattice Parameters Using Support Vector Regression
journal, November 2014

  • Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.
  • Journal of Superconductivity and Novel Magnetism, Vol. 28, Issue 1
  • DOI: 10.1007/s10948-014-2891-7

Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
journal, April 2015

  • von Lilienfeld, O. Anatole; Ramakrishnan, Raghunathan; Rupp, Matthias
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24912

The Distribution of the Flora in the Alpine Zone.1
journal, February 1912


How Evolutionary Crystal Structure Prediction Works—and Why
journal, March 2011

  • Oganov, Artem R.; Lyakhov, Andriy O.; Valle, Mario
  • Accounts of Chemical Research, Vol. 44, Issue 3
  • DOI: 10.1021/ar1001318

Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential
journal, June 2009


USPEX—Evolutionary crystal structure prediction
journal, December 2006

  • Glass, Colin W.; Oganov, Artem R.; Hansen, Nikolaus
  • Computer Physics Communications, Vol. 175, Issue 11-12
  • DOI: 10.1016/j.cpc.2006.07.020

Machine learning material properties from the periodic table using convolutional neural networks
journal, January 2018

  • Zheng, Xiaolong; Zheng, Peng; Zhang, Rui-Zhi
  • Chemical Science, Vol. 9, Issue 44
  • DOI: 10.1039/C8SC02648C

A database to enable discovery and design of piezoelectric materials
journal, September 2015

  • de Jong, Maarten; Chen, Wei; Geerlings, Henry
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.53

CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis
journal, December 2011

  • Hummelshøj, Jens S.; Abild-Pedersen, Frank; Studt, Felix
  • Angewandte Chemie International Edition, Vol. 51, Issue 1
  • DOI: 10.1002/anie.201107947

Activation Atlas
journal, March 2019


The Search for BaTiO 3 -Based Piezoelectrics With Large Piezoelectric Coefficient Using Machine Learning
journal, February 2019

  • Yuan, Ruihao; Xue, Deqing; Xue, Dezhen
  • IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 66, Issue 2
  • DOI: 10.1109/TUFFC.2018.2888800

Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery
journal, September 2015

  • Pyzer-Knapp, Edward O.; Li, Kewei; Aspuru-Guzik, Alan
  • Advanced Functional Materials, Vol. 25, Issue 41
  • DOI: 10.1002/adfm.201501919

Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity
journal, September 2017


Strongly Constrained and Appropriately Normed Semilocal Density Functional
journal, July 2015


Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery
journal, January 2018

  • Meredig, Bryce; Antono, Erin; Church, Carena
  • Molecular Systems Design & Engineering, Vol. 3, Issue 5
  • DOI: 10.1039/C8ME00012C

Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning
journal, July 2018

  • O’Connor, Nolan J.; Jonayat, A. S. M.; Janik, Michael J.
  • Nature Catalysis, Vol. 1, Issue 7
  • DOI: 10.1038/s41929-018-0094-5

Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts
journal, October 2013


A Bayesian approach to calibrating high-throughput virtual screening results and application to organic photovoltaic materials
journal, January 2016

  • Pyzer-Knapp, Edward O.; Simm, Gregor N.; Aspuru Guzik, Alán
  • Materials Horizons, Vol. 3, Issue 3
  • DOI: 10.1039/C5MH00282F

Machine learning modeling of superconducting critical temperature
journal, June 2018


Material descriptors for morphotropic phase boundary curvature in lead-free piezoelectrics
journal, July 2017

  • Xue, Dezhen; Balachandran, Prasanna V.; Wu, Haijun
  • Applied Physics Letters, Vol. 111, Issue 3
  • DOI: 10.1063/1.4990955

An electrostatic spectral neighbor analysis potential for lithium nitride
journal, July 2019


Machine learning bandgaps of double perovskites
journal, January 2016

  • Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19375

Why gold is the noblest of all the metals
journal, July 1995


Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials
journal, December 2018


New Superconducting and Semiconducting Fe-B Compounds Predicted with an Ab Initio Evolutionary Search
journal, November 2010


Die Gesetze der Krystallochemie
journal, May 1926


Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12
journal, January 2017

  • Chen, Chi; Lu, Ziheng; Ciucci, Francesco
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40769

The Lack of A Priori Distinctions Between Learning Algorithms
journal, October 1996


Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials
journal, February 2012


Bayesian inference of atomistic structure in functional materials
journal, March 2019

  • Todorović, Milica; Gutmann, Michael U.; Corander, Jukka
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0175-2

Using Artificial Neural Networks to Boost High-throughput Discovery in Heterogeneous Catalysis
journal, November 2004

  • Baumes, L.; Farrusseng, D.; Lengliz, M.
  • QSAR & Combinatorial Science, Vol. 23, Issue 9
  • DOI: 10.1002/qsar.200430900

Exploring new approaches towards the formability of mixed-ion perovskites by DFT and machine learning
journal, January 2019

  • Park, Heesoo; Mall, Raghvendra; Alharbi, Fahhad H.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 3
  • DOI: 10.1039/C8CP06528D

Machine learning for renewable energy materials
journal, January 2019

  • Gu, Geun Ho; Noh, Juhwan; Kim, Inkyung
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/C9TA02356A

Organic and solution-processed tandem solar cells with 17.3% efficiency
journal, August 2018


Low-Energy Structures of Binary Pt–Sn Clusters from Global Search Using Genetic Algorithm and Density Functional Theory
journal, December 2014


Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application
journal, April 2018


Discovery of a Superhard Iron Tetraboride Superconductor
journal, October 2013


Origin of the High Piezoelectric Response in PbZr 1 x Ti x O 3
journal, June 2000


Prediction of solid oxide fuel cell cathode activity with first-principles descriptors
journal, January 2011

  • Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee02032c

Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces
journal, October 2017


Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016


Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution
journal, September 2018


The Materials Data Facility: Data Services to Advance Materials Science Research
journal, July 2016


The thermodynamic scale of inorganic crystalline metastability
journal, November 2016

  • Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600225

Study of Li atom diffusion in amorphous Li3PO4 with neural network potential
journal, December 2017

  • Li, Wenwen; Ando, Yasunobu; Minamitani, Emi
  • The Journal of Chemical Physics, Vol. 147, Issue 21
  • DOI: 10.1063/1.4997242

Thermodynamic Stability Landscape of Halide Double Perovskites via High-Throughput Computing and Machine Learning
journal, January 2019

  • Li, Zhenzhu; Xu, Qichen; Sun, Qingde
  • Advanced Functional Materials, Vol. 29, Issue 9
  • DOI: 10.1002/adfm.201807280

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Constructing first-principles phase diagrams of amorphous Li x Si using machine-learning-assisted sampling with an evolutionary algorithm
journal, June 2018

  • Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017661

Kohn-Sham potential with discontinuity for band gap materials
journal, September 2010