DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean

Abstract

Abstract We report on the geochemistry of hydrocarbons and pore waters down to 62.5 mbsf, collected by drilling with the MARUM‐MeBo70 and by gravity coring at the Lunde pockmark in the Vestnesa Ridge. Our data document the origin and transformations of volatiles feeding gas emissions previously documented in this region. Gas hydrates are present where a fracture network beneath the pockmark focusses migration of thermogenic hydrocarbons characterized by their C 1 /C 2+ and stable isotopic compositions (δ 2 H‐CH 4 , δ 13 C‐CH 4 ). Measured geothermal gradients (~80 °C/km) and known formation temperatures (>70 °C) suggest that those hydrocarbons are formed at depths >800 mbsf. A combined analytical/modeling approach, including concentration and isotopic mass balances, reveals that pockmark sediments experience diffuse migration of thermogenic hydrocarbons. However, at sites without channeled flow this appears to be limited to depths >~50 mbsf. At all sites we document a contribution of microbial methanogenesis to the overall carbon cycle that includes a component of secondary carbonate reduction—that is, reduction of dissolved inorganic carbon generated by anaerobic oxidation of methane in the uppermost methanogenic zone. Anaerobic oxidation of methane and carbonate reduction rates are spatially variable within the pockmark and are highestmore » at high‐flux sites. These reactions are revealed by 13 C depletions of dissolved inorganic carbon at the sulfate‐methane interface at all sites. However, 13 C depletions of CH 4 are only observed at the low methane flux sites because changes in the isotopic composition of the overall methane pool are masked at high‐flux sites. 13 C depletions of total organic carbon suggest that at seeps sites, methane‐derived carbon is incorporated into de novo synthesized biomass.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [2];  [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [5];  [2]; ORCiD logo [1]
  1. MARUM—Center for Marine Environmental Sciences and Department of Geosciences University of Bremen Bremen Germany
  2. Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences UiT—The Arctic University of Norway Tromsø Norway
  3. Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences UiT—The Arctic University of Norway Tromsø Norway, Geological Survey of Norway Trondheim Norway
  4. College of Earth Ocean and Atmospheric Sciences Oregon State University Corvallis OR USA
  5. GEOMAR—Helmholtz Centre for Ocean Research Kiel Germany
Publication Date:
Research Org.:
Oregon State Univ., Corvallis, OR (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1582501
Alternate Identifier(s):
OSTI ID: 1582503; OSTI ID: 1799760
Grant/Contract Number:  
DE‐FE0013531; FE0013531
Resource Type:
Published Article
Journal Name:
Journal of Geophysical Research. Solid Earth
Additional Journal Information:
Journal Name: Journal of Geophysical Research. Solid Earth Journal Volume: 125 Journal Issue: 1; Journal ID: ISSN 2169-9313
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Geochemistry & Geophysics

Citation Formats

Pape, T., Bünz, S., Hong, W. ‐L., Torres, M. E., Riedel, M., Panieri, G., Lepland, A., Hsu, C. ‐W., Wintersteller, P., Wallmann, K., Schmidt, C., Yao, H., and Bohrmann, G. Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean. United States: N. p., 2020. Web. doi:10.1029/2018JB016679.
Pape, T., Bünz, S., Hong, W. ‐L., Torres, M. E., Riedel, M., Panieri, G., Lepland, A., Hsu, C. ‐W., Wintersteller, P., Wallmann, K., Schmidt, C., Yao, H., & Bohrmann, G. Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean. United States. https://doi.org/10.1029/2018JB016679
Pape, T., Bünz, S., Hong, W. ‐L., Torres, M. E., Riedel, M., Panieri, G., Lepland, A., Hsu, C. ‐W., Wintersteller, P., Wallmann, K., Schmidt, C., Yao, H., and Bohrmann, G. Mon . "Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean". United States. https://doi.org/10.1029/2018JB016679.
@article{osti_1582501,
title = {Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean},
author = {Pape, T. and Bünz, S. and Hong, W. ‐L. and Torres, M. E. and Riedel, M. and Panieri, G. and Lepland, A. and Hsu, C. ‐W. and Wintersteller, P. and Wallmann, K. and Schmidt, C. and Yao, H. and Bohrmann, G.},
abstractNote = {Abstract We report on the geochemistry of hydrocarbons and pore waters down to 62.5 mbsf, collected by drilling with the MARUM‐MeBo70 and by gravity coring at the Lunde pockmark in the Vestnesa Ridge. Our data document the origin and transformations of volatiles feeding gas emissions previously documented in this region. Gas hydrates are present where a fracture network beneath the pockmark focusses migration of thermogenic hydrocarbons characterized by their C 1 /C 2+ and stable isotopic compositions (δ 2 H‐CH 4 , δ 13 C‐CH 4 ). Measured geothermal gradients (~80 °C/km) and known formation temperatures (>70 °C) suggest that those hydrocarbons are formed at depths >800 mbsf. A combined analytical/modeling approach, including concentration and isotopic mass balances, reveals that pockmark sediments experience diffuse migration of thermogenic hydrocarbons. However, at sites without channeled flow this appears to be limited to depths >~50 mbsf. At all sites we document a contribution of microbial methanogenesis to the overall carbon cycle that includes a component of secondary carbonate reduction—that is, reduction of dissolved inorganic carbon generated by anaerobic oxidation of methane in the uppermost methanogenic zone. Anaerobic oxidation of methane and carbonate reduction rates are spatially variable within the pockmark and are highest at high‐flux sites. These reactions are revealed by 13 C depletions of dissolved inorganic carbon at the sulfate‐methane interface at all sites. However, 13 C depletions of CH 4 are only observed at the low methane flux sites because changes in the isotopic composition of the overall methane pool are masked at high‐flux sites. 13 C depletions of total organic carbon suggest that at seeps sites, methane‐derived carbon is incorporated into de novo synthesized biomass.},
doi = {10.1029/2018JB016679},
journal = {Journal of Geophysical Research. Solid Earth},
number = 1,
volume = 125,
place = {United States},
year = {Mon Jan 13 00:00:00 EST 2020},
month = {Mon Jan 13 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2018JB016679

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Production, consumption, and migration of methane in accretionary prism of southwestern Taiwan
journal, August 2017

  • Chen, Nai‐Chen; Yang, Tsanyao Frank; Hong, Wei‐Li
  • Geochemistry, Geophysics, Geosystems, Vol. 18, Issue 8
  • DOI: 10.1002/2017GC006798

A deep seismic transect from Hovgård Ridge to northwestern Svalbard across the continental-ocean transition: A sheared margin study
journal, May 2004


Gas hydrate distributions in sediments of pockmarks from the Nigerian margin – Results and interpretation from shallow drilling
journal, January 2015


Bivalve shell horizons in seafloor pockmarks of the last glacial‐interglacial transition: a thousand years of methane emissions in the A rctic O cean
journal, December 2015

  • Ambrose, William G.; Panieri, Giuliana; Schneider, Andrea
  • Geochemistry, Geophysics, Geosystems, Vol. 16, Issue 12
  • DOI: 10.1002/2015GC005980

Carbon isotope fractionation during natural gas generation from kerogen
journal, May 1991


Effect of early Pliocene uplift on late Pliocene cooling in the Arctic–Atlantic gateway
journal, February 2014


Biodegradation of oil in uplifted basins prevented by deep-burial sterilization
journal, June 2001

  • Wilhelms, A.; Larter, S. R.; Head, I.
  • Nature, Vol. 411, Issue 6841
  • DOI: 10.1038/35082535

Fracture-controlled fluid transport supports microbial methane-oxidizing communities at Vestnesa Ridge
journal, January 2019


Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard
journal, June 2009

  • Hustoft, Steinar; Bünz, Stefan; Mienert, Jürgen
  • Earth and Planetary Science Letters, Vol. 284, Issue 1-2
  • DOI: 10.1016/j.epsl.2009.03.038

Emerging Topics in Marine Methane Biogeochemistry
journal, January 2011


The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin
journal, June 2009

  • Heuer, Verena B.; Pohlman, John W.; Torres, Marta E.
  • Geochimica et Cosmochimica Acta, Vol. 73, Issue 11
  • DOI: 10.1016/j.gca.2009.03.001

Record of methane emissions from the West Svalbard continental margin during the last 23.500yrs revealed by δ13C of benthic foraminifera
journal, November 2014


Late Quaternary contourites and glaciomarine sedimentation in the Fram Strait
journal, September 2007


An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N
journal, August 2017


A 160,000-year-old history of tectonically controlled methane seepage in the Arctic
journal, August 2019


Precise δ 13 C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry. : Automated δ
journal, August 2005

  • Torres, Marta E.; Mix, Alan C.; Rugh, William D.
  • Limnology and Oceanography: Methods, Vol. 3, Issue 8
  • DOI: 10.4319/lom.2005.3.349

Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard
journal, December 2012


Methane seepage at Vestnesa Ridge (NW Svalbard) since the Last Glacial Maximum
journal, August 2018


Contourites in the Fram Strait
journal, January 1993


In Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamics
journal, April 2018

  • Riedel, M.; Wallmann, K.; Berndt, C.
  • Geochemistry, Geophysics, Geosystems, Vol. 19, Issue 4
  • DOI: 10.1002/2017GC007288

Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach
journal, September 2014


Design and deployment of autoclave pressure vessels for the portable deep-sea drill rig MeBo (<i>Meeresboden-Bohrgerät</i>)
journal, January 2017

  • Pape, Thomas; Hohnberg, Hans-Jürgen; Wunsch, David
  • Scientific Drilling, Vol. 23
  • DOI: 10.5194/sd-23-29-2017

A Geochemical Model For Characterization Of Hydrocarbon Gas Sources In Marine Sediments
conference, April 2013

  • Bernard, Bernie; Brooks, James M.; Sackett, William M.
  • Offshore Technology Conference
  • DOI: 10.4043/2934-MS

Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo
journal, January 2013

  • Freudenthal, T.; Wefer, G.
  • Geoscientific Instrumentation, Methods and Data Systems, Vol. 2, Issue 2
  • DOI: 10.5194/gi-2-329-2013

Bottom-simulating reflections and geothermal gradients across the western Svalbard margin
journal, December 2005


The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity
journal, December 1979

  • Hyndman, R. D.; Davis, E. E.; Wright, J. A.
  • Marine Geophysical Researches, Vol. 4, Issue 2
  • DOI: 10.1007/BF00286404

Late glacial and deglacial palaeoceanographic changes at Vestnesa Ridge, Fram Strait: Methane seep versus non-seep environments
journal, June 2017


High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift
journal, October 2010


Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles
journal, February 2008


The temperatures of oil and gas formation in the sub-surface
journal, June 1988

  • Quigley, T. M.; Mackenzie, A. S.
  • Nature, Vol. 333, Issue 6173
  • DOI: 10.1038/333549a0

Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin
journal, January 2013


Analytical theory relating the depth of the sulfate-methane transition to gas hydrate distribution and saturation: RELATE SMT DEPTH TO HYDRATE DISTRIBUTION
journal, March 2011

  • Bhatnagar, Gaurav; Chatterjee, Sayantan; Chapman, Walter G.
  • Geochemistry, Geophysics, Geosystems, Vol. 12, Issue 3
  • DOI: 10.1029/2010GC003397

Anaerobic Oxidation of Methane: Progress with an Unknown Process
journal, October 2009


Organic–inorganic interactions in petroleum-producing sedimentary basins
journal, November 2003


Modelling persistent methane seepage offshore western Svalbard since early Pleistocene
journal, March 2018


Fundamental principles and applications of natural gas hydrates
journal, November 2003


Sulfur diagenesis under rapid accumulation of organic-rich sediments in a marine mangrove from Guadeloupe (French West Indies)
journal, April 2017


Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming
journal, January 2018


Arctic methane sources: Isotopic evidence for atmospheric inputs: ARCTIC METHANE SOURCES
journal, November 2011

  • Fisher, R. E.; Sriskantharajah, S.; Lowry, D.
  • Geophysical Research Letters, Vol. 38, Issue 21
  • DOI: 10.1029/2011GL049319

Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon
journal, September 2004

  • Torres, M. E.; Wallmann, K.; Tréhu, A. M.
  • Earth and Planetary Science Letters, Vol. 226, Issue 1-2
  • DOI: 10.1016/j.epsl.2004.07.029

Correlation between tectonic stress regimes and methane seepage on the western Svalbard margin
journal, January 2019


Painting a picture of gas hydrate distribution with thermal images: HYDRATE DISTRIBUTION AND THERMAL IMAGES
journal, February 2005

  • Weinberger, Jill L.; Brown, Kevin M.; Long, Philip E.
  • Geophysical Research Letters, Vol. 32, Issue 4
  • DOI: 10.1029/2004GL021437

CH 4 -consuming microorganisms and the formation of carbonate crusts at cold seeps
journal, October 2002

  • Aloisi, Giovanni; Bouloubassi, Ioanna; Heijs, Sander K.
  • Earth and Planetary Science Letters, Vol. 203, Issue 1
  • DOI: 10.1016/S0012-821X(02)00878-6

Microbial life in permafrost
journal, January 2004


The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy
journal, May 2009


Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence
journal, May 1986


Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway
journal, August 2010


Opening of the Fram Strait gateway: A review of plate tectonic constraints
journal, April 2008


Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability
journal, January 1998


Gas hydrate distribution and hydrocarbon maturation north of the Knipovich Ridge, western Svalbard margin: HYDROCARBON MATURATION OFF SVALBARD
journal, March 2016

  • Dumke, Ines; Burwicz, Ewa B.; Berndt, Christian
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 3
  • DOI: 10.1002/2015JB012083

Methane gas-phase dynamics in marine sediments: A model study
journal, March 2009

  • Mogollon, J. M.; L'Heureux, I.; Dale, A. W.
  • American Journal of Science, Vol. 309, Issue 3
  • DOI: 10.2475/03.2009.01

Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico
journal, November 2008


Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane
journal, September 1999


Carbon isotope exchange during anaerobic oxidation of methane (AOM) in sediments of the northeastern South China Sea
journal, February 2019

  • Chuang, Pei-Chuan; Yang, Tsanyao Frank; Wallmann, Klaus
  • Geochimica et Cosmochimica Acta, Vol. 246
  • DOI: 10.1016/j.gca.2018.11.003

Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution: Pockmark formation and evolution
journal, April 2014

  • Sultan, N.; Bohrmann, G.; Ruffine, L.
  • Journal of Geophysical Research: Solid Earth, Vol. 119, Issue 4
  • DOI: 10.1002/2013JB010546

A marine microbial consortium apparently mediating anaerobic oxidation of methane
journal, October 2000

  • Boetius, Antje; Ravenschlag, Katrin; Schubert, Carsten J.
  • Nature, Vol. 407, Issue 6804
  • DOI: 10.1038/35036572

Global Multi-Resolution Topography synthesis: GLOBAL MULTI-RESOLUTION TOPOGRAPHY SYNTHESIS
journal, March 2009

  • Ryan, William B. F.; Carbotte, Suzanne M.; Coplan, Justin O.
  • Geochemistry, Geophysics, Geosystems, Vol. 10, Issue 3
  • DOI: 10.1029/2008GC002332

Rhizon sampling of porewaters near the sediment-water interface of aquatic systems: Rhizon porewater sampling
journal, August 2005

  • Seeberg-Elverfeldt, Jens; Schlüter, Michael; Feseker, Tomas
  • Limnology and Oceanography: Methods, Vol. 3, Issue 8
  • DOI: 10.4319/lom.2005.3.361

Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea
journal, July 2003

  • Haese, Ralf R.; Meile, Christof; Van Cappellen, Philippe
  • Earth and Planetary Science Letters, Vol. 212, Issue 3-4
  • DOI: 10.1016/S0012-821X(03)00226-7

Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin, Nankai Trough subduction zone
journal, June 2014

  • Pape, Thomas; Geprägs, Patrizia; Hammerschmidt, Sebastian
  • Geochemistry, Geophysics, Geosystems, Vol. 15, Issue 6
  • DOI: 10.1002/2013GC005057

Thermogenic methane injection via bubble transport into the upper Arctic Ocean from the hydrate-charged Vestnesa Ridge, Svalbard
journal, May 2014

  • Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan
  • Geochemistry, Geophysics, Geosystems, Vol. 15, Issue 5
  • DOI: 10.1002/2013GC005179

Role of tectonic stress in seepage evolution along the gas hydrate-charged Vestnesa Ridge, Fram Strait: Arctic seepage modulated by tectonics
journal, February 2015

  • Plaza-Faverola, A.; Bünz, S.; Johnson, J. E.
  • Geophysical Research Letters, Vol. 42, Issue 3
  • DOI: 10.1002/2014GL062474

A new 6 Myr stratigraphic framework for the Atlantic–Arctic Gateway
journal, May 2014


Methane cold seeps as biological oases in the high-Arctic deep sea: Cold seeps in the high-Arctic deep sea
journal, October 2017

  • Åström, Emmelie K. L.; Carroll, Michael L.; Ambrose, William G.
  • Limnology and Oceanography, Vol. 63, Issue S1
  • DOI: 10.1002/lno.10732

Seafloor oxygen consumption fuelled by methane from cold seeps
journal, August 2013

  • Boetius, Antje; Wenzhöfer, Frank
  • Nature Geoscience, Vol. 6, Issue 9
  • DOI: 10.1038/ngeo1926

Bottom-simulating reflector dynamics at Arctic thermogenic gas provinces: An example from Vestnesa Ridge, offshore west Svalbard: Arctic Gas Hydrate Stability Dynamics
journal, June 2017

  • Plaza-Faverola, A.; Vadakkepuliyambatta, S.; Hong, W. -L.
  • Journal of Geophysical Research: Solid Earth, Vol. 122, Issue 6
  • DOI: 10.1002/2016JB013761

Methane in shallow subsurface sediments at the landward limit of the gas hydrate stability zone offshore western Svalbard
journal, February 2017

  • Graves, Carolyn A.; James, Rachael H.; Sapart, Célia Julia
  • Geochimica et Cosmochimica Acta, Vol. 198
  • DOI: 10.1016/j.gca.2016.11.015

Rifting in the northern Norwegian-Greenland Sea: Thermal tests of asymmetric spreading
journal, August 1991

  • Crane, Kathleen; Sundvor, Eirik; Buck, Roger
  • Journal of Geophysical Research: Solid Earth, Vol. 96, Issue B9
  • DOI: 10.1029/91JB01231