DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate

Abstract

Spin and orbital quantum numbers play a key role in the physics of Mott insulators, but in most systems they are connected only indirectly—via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) introduce strong spin–orbit coupling directly, such that these numbers become entwined together and the Mott physics attains a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin–anisotropic magnetic interactions, coupling the spin to a given spatial direction of exchange and leading to strongly frustrated magnetism. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb and exhibits striking evidence for highly spin–anisotropic exchange. The basic structural units of this material suggest that a new family of three-dimensional structures could exist, the ‘harmonic honeycomb’ iridates, of which the present compound is the first example.

Authors:
 [1];  [2];  [3];  [2];  [4];  [4];  [4];  [4];  [5];  [5];  [5];  [6];  [7];  [2];  [8];  [8];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Texas, Austin, TX (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. Univ. of Oxford (United Kingdom). Clarendon Lab.
  5. Univ. of Texas at Dallas, Richardson, TX (United States)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  7. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  8. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Science Foundation (NSF); Engineering and Physical Sciences Research Council (EPSRC), United Kingdom
OSTI Identifier:
1581219
Grant/Contract Number:  
AC02-05CH11231; DGE 1106400; EP/H014934/1
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Modic, K. A., Smidt, Tess E., Kimchi, Itamar, Breznay, Nicholas P., Biffin, Alun, Choi, Sungkyun, Johnson, Roger D., Coldea, Radu, Watkins-Curry, Pilanda, McCandless, Gregory T., Chan, Julia Y., Gandara, Felipe, Islam, Z., Vishwanath, Ashvin, Shekhter, Arkady, McDonald, Ross D., and Analytis, James G. Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate. United States: N. p., 2014. Web. doi:10.1038/ncomms5203.
Modic, K. A., Smidt, Tess E., Kimchi, Itamar, Breznay, Nicholas P., Biffin, Alun, Choi, Sungkyun, Johnson, Roger D., Coldea, Radu, Watkins-Curry, Pilanda, McCandless, Gregory T., Chan, Julia Y., Gandara, Felipe, Islam, Z., Vishwanath, Ashvin, Shekhter, Arkady, McDonald, Ross D., & Analytis, James G. Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate. United States. https://doi.org/10.1038/ncomms5203
Modic, K. A., Smidt, Tess E., Kimchi, Itamar, Breznay, Nicholas P., Biffin, Alun, Choi, Sungkyun, Johnson, Roger D., Coldea, Radu, Watkins-Curry, Pilanda, McCandless, Gregory T., Chan, Julia Y., Gandara, Felipe, Islam, Z., Vishwanath, Ashvin, Shekhter, Arkady, McDonald, Ross D., and Analytis, James G. Fri . "Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate". United States. https://doi.org/10.1038/ncomms5203. https://www.osti.gov/servlets/purl/1581219.
@article{osti_1581219,
title = {Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate},
author = {Modic, K. A. and Smidt, Tess E. and Kimchi, Itamar and Breznay, Nicholas P. and Biffin, Alun and Choi, Sungkyun and Johnson, Roger D. and Coldea, Radu and Watkins-Curry, Pilanda and McCandless, Gregory T. and Chan, Julia Y. and Gandara, Felipe and Islam, Z. and Vishwanath, Ashvin and Shekhter, Arkady and McDonald, Ross D. and Analytis, James G.},
abstractNote = {Spin and orbital quantum numbers play a key role in the physics of Mott insulators, but in most systems they are connected only indirectly—via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) introduce strong spin–orbit coupling directly, such that these numbers become entwined together and the Mott physics attains a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin–anisotropic magnetic interactions, coupling the spin to a given spatial direction of exchange and leading to strongly frustrated magnetism. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb and exhibits striking evidence for highly spin–anisotropic exchange. The basic structural units of this material suggest that a new family of three-dimensional structures could exist, the ‘harmonic honeycomb’ iridates, of which the present compound is the first example.},
doi = {10.1038/ncomms5203},
journal = {Nature Communications},
number = 1,
volume = 5,
place = {United States},
year = {Fri Jun 27 00:00:00 EDT 2014},
month = {Fri Jun 27 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 217 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exactly solvable Kitaev model in three dimensions
journal, January 2009


Competitions in Layered Ruthenates: Ferromagnetism versus Antiferromagnetism and Triplet versus Singlet Pairing
journal, May 1999


NaIrO3—A pentavalent post-perovskite
journal, March 2011

  • Bremholm, M.; Dutton, S. E.; Stephens, P. W.
  • Journal of Solid State Chemistry, Vol. 184, Issue 3
  • DOI: 10.1016/j.jssc.2011.01.028

Simple Models of Magnetism
book, January 2008


Zigzag Magnetic Order in the Iridium Oxide Na 2 IrO 3
journal, February 2013


Anyons in an exactly solved model and beyond
journal, January 2006


Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models
journal, January 2009


Cuprate Superconductivity: Dependence of T c on the c -Axis Layering Structure
journal, July 1999


Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models
journal, November 1966


Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever
journal, August 2002

  • Ohmichi, E.; Osada, T.
  • Review of Scientific Instruments, Vol. 73, Issue 8
  • DOI: 10.1063/1.1491999

Physical properties of the n =3 Ruddlesden - Popper compound
journal, November 1998


Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides A 2 IrO 3
journal, July 2010


Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates and phase diagram in an infinite- D approximation
journal, November 2014


Heisenberg-Kitaev model on the hyperhoneycomb lattice
journal, January 2014


Hybrid Improper Ferroelectricity: A Mechanism for Controllable Polarization-Magnetization Coupling
journal, March 2011


Structure and properties of ordered Li2IrO3 and Li2PtO3
journal, August 2008

  • O’Malley, Matthew J.; Verweij, Henk; Woodward, Patrick M.
  • Journal of Solid State Chemistry, Vol. 181, Issue 8
  • DOI: 10.1016/j.jssc.2008.04.005

Magnetic Field-Tuned Quantum Criticality in the Metallic Ruthenate Sr3Ru2O7
journal, October 2001


Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets
journal, August 2008


Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates A 2 IrO 3
journal, March 2012


Spin Waves and Revised Crystal Structure of Honeycomb Iridate Na 2 IrO 3
journal, March 2012


Magnetic excitation spectrum of Na 2 IrO 3 probed with resonant inelastic x-ray scattering
journal, June 2013


Exactly solvable Kitaev model in three dimensions
text, January 2008


Heisenberg-Kitaev model on hyperhoneycomb lattice
text, January 2013


Works referencing / citing this record:

Ab Initio Approaches for Low‐Energy Spin Hamiltonians
journal, March 2019

  • Riedl, Kira; Li, Ying; Valentí, Roser
  • physica status solidi (b), Vol. 256, Issue 9
  • DOI: 10.1002/pssb.201800684

Comparative study of monolithic platinum and iridium as oxygen-evolving anodes during the electrolytic reduction of uranium oxide in a molten LiCl–Li2O electrolyte
journal, February 2019

  • Herrmann, S. D.; Tripathy, P. K.; Frank, S. M.
  • Journal of Applied Electrochemistry, Vol. 49, Issue 4
  • DOI: 10.1007/s10800-019-01287-1

Iridates from the molecular side
journal, July 2016

  • Pedersen, Kasper S.; Bendix, Jesper; Tressaud, Alain
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12195

Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3
journal, July 2016

  • Glamazda, A.; Lemmens, P.; Do, S. -H.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12286

Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
journal, April 2016

  • Banerjee, A.; Bridges, C. A.; Yan, J. -Q.
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4604

Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3
journal, February 2017

  • Pearce, Paul E.; Perez, Arnaud J.; Rousse, Gwenaelle
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4864

Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3
journal, May 2015

  • Hwan Chun, Sae; Kim, Jong-Woo; Kim, Jungho
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3322

Correlated states in β-Li2IrO3 driven by applied magnetic fields
journal, October 2017


Theory of the field-revealed Kitaev spin liquid
journal, June 2019


Path to stable quantum spin liquids in spin-orbit coupled correlated materials
journal, April 2018


Concept and realization of Kitaev quantum spin liquids
journal, March 2019

  • Takagi, Hidenori; Takayama, Tomohiro; Jackeli, George
  • Nature Reviews Physics, Vol. 1, Issue 4
  • DOI: 10.1038/s42254-019-0038-2

Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
journal, November 2016

  • Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep37925

The 2016 oxide electronic materials and oxide interfaces roadmap
journal, October 2016


Recent progress on correlated electron systems with strong spin–orbit coupling
journal, August 2016


Quantum spin liquids: a review
journal, November 2016


Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice
journal, April 2018

  • Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 18
  • DOI: 10.1088/1361-648x/aab8dc

Resonant inelastic x-ray scattering study of $\alpha$ -RuCl 3 : a progress report
journal, January 2020

  • Lebert, Blair W.; Kim, Subin; Bisogni, Valentina
  • Journal of Physics: Condensed Matter, Vol. 32, Issue 14
  • DOI: 10.1088/1361-648x/ab5595

The challenge of spin–orbit-tuned ground states in iridates: a key issues review
journal, February 2018


Frustration and quantum criticality
journal, May 2018


Residual entropy and spin fractionalizations in the mixed-spin Kitaev model
journal, September 2019


All-oxide ferromagnetic resonance and spin pumping with SrIr O 3
journal, September 2019


Lattice dynamics and structural transition of the hyperhoneycomb iridate β Li 2 IrO 3 investigated by high-pressure Raman scattering
journal, February 2020


Spin dynamics and field-induced magnetic phase transition in the honeycomb Kitaev magnet α Li 2 IrO 3
journal, February 2019


Universal tensor-network algorithm for any infinite lattice
journal, May 2019


Non-Kitaev spin liquids in Kitaev materials
journal, May 2019


Antiferromagnetic Kitaev interaction in f -electron based honeycomb magnets
journal, June 2019


Hidden Plaquette Order in a Classical Spin Liquid Stabilized by Strong Off-Diagonal Exchange
journal, June 2019


Crystal growth and magnetic anisotropy in the spin-chain ruthenate Na 2 RuO 4
journal, February 2018


N i 2 M o 3 O 8 : Complex antiferromagnetic order on a honeycomb lattice
journal, January 2019


Neutron scattering in the proximate quantum spin liquid α-RuCl 3
journal, June 2017


Ba4[Mn3N6], a Quasi-One-Dimensional Mixed-Valent Nitridomanganate (II, IV)
journal, May 2018

  • Ovchinnikov, Alexander; Bobnar, Matej; Prots, Yurii
  • Crystals, Vol. 8, Issue 6
  • DOI: 10.3390/cryst8060235

Single crystal growth from separated educts and its application to lithium transition-metal oxides
journal, October 2016

  • Freund, F.; Williams, S. C.; Johnson, R. D.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep35362

Pressure-Tuned Interactions in Frustrated Magnets: Pathway to Quantum Spin Liquids?
journal, December 2019


Three-dimensional quantum anomalous Hall effect in hyperhoneycomb lattices
journal, May 2018


The 2016 oxide electronic materials and oxide interfaces roadmap
text, January 2016


Neutron scattering in the proximate quantum spin liquid α-RuCl3.
text, January 2017

  • Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.11028

Line of Dirac Nodes in Hyper-Honeycomb Lattices
text, January 2014


Weyl spin liquids
text, January 2014


Recent progress on correlated electron systems with strong spin-orbit coupling
text, January 2015


Challenges in Design of Kitaev Materials: Magnetic Interactions from Competing Energy Scales
text, January 2016


Low-energy Spin Dynamics of the Honeycomb Spin Liquid Beyond the Kitaev Limit
text, January 2016


Spin-orbit coupled systems in the "atomic" limit: rhenates, osmates, iridates
text, January 2018


Antiferromagnetic Kitaev Interaction in $f$-Electron Based Honeycomb Magnets
text, January 2018


Kitaev-like honeycomb magnets: Global phase behavior and emergent effective models
text, January 2019


Erratum: Iridates from the molecular side
journal, August 2016

  • Pedersen, Kasper S.; Bendix, Jesper; Tressaud, Alain
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12686

Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates
journal, August 2017


Theory of the field-revealed Kitaev spin liquid
journal, June 2019


Ba4[Mn3N6], a Quasi-One-Dimensional Mixed-Valent Nitridomanganate (II, IV)
journal, May 2018

  • Ovchinnikov, Alexander; Bobnar, Matej; Prots, Yurii
  • Crystals, Vol. 8, Issue 6
  • DOI: 10.3390/cryst8060235

Kitaev Materials
preprint, January 2017


Physics of the Kitaev model: fractionalization, dynamical correlations, and material connections
text, January 2017


Putative spin liquid in the triangle-based iridate Ba$_3$IrTi$_2$O$_9$
text, January 2017


Topological semimetals and insulators in three-dimensional honeycomb materials
text, January 2018


Extended Bloch theorem for topological lattice models with open boundaries
text, January 2018


Kitaev magnetism through the prism of lithium iridate
text, January 2021