DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Converting PBO fibers into carbon fibers by ultrafast carbonization

Abstract

Here, we report an ultrafast transformation of poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibers into car- bon fibers (CFs) by direct carbonization that eliminates high-cost oxidation in traditional CF conversion. Ultrafast heating and cooling render PBO-derived CFs superlative mechanical properties. ReaxFF atomistic-scale reactive molecular dynamics simulations unveil the PBO to CF conversion mechanism in which ultrafast heating suppresses the O-contained gas release, facilitating all-carbon rings alignment during the carbonization of PBO. These results offer new guidelines for identifying and evaluating alternative CF precursors and fresh perspectives on smart manufacturing of CFs.

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [2];  [2];  [1];  [1];  [2];  [1];  [2]; ORCiD logo [3];  [2];  [1]
  1. Univ. of Virginia, Charlottesville, VA (United States)
  2. Pennsylvania State Univ., University Park, PA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Virginia, Charlottesville, VA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE
OSTI Identifier:
1651295
Alternate Identifier(s):
OSTI ID: 1580648; OSTI ID: 1775593
Grant/Contract Number:  
AC05-00OR22725; EE0008195
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 159; Journal Issue: n/a; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Zhang, Liwen, Kowalik, Małgorzata, Gao, Zan, Ashraf, Chowdhury M., Rajabpour, Siavash, Bumgardner, Clifton, Schwab, Yosyp, Damirchi, Behzad, Zhu, Jiadeng, Akbarian, Dooman, Klett, James W., van Duin, Adri C.T., and Li, Xiaodong. Converting PBO fibers into carbon fibers by ultrafast carbonization. United States: N. p., 2020. Web. doi:10.1016/j.carbon.2019.12.067.
Zhang, Liwen, Kowalik, Małgorzata, Gao, Zan, Ashraf, Chowdhury M., Rajabpour, Siavash, Bumgardner, Clifton, Schwab, Yosyp, Damirchi, Behzad, Zhu, Jiadeng, Akbarian, Dooman, Klett, James W., van Duin, Adri C.T., & Li, Xiaodong. Converting PBO fibers into carbon fibers by ultrafast carbonization. United States. https://doi.org/10.1016/j.carbon.2019.12.067
Zhang, Liwen, Kowalik, Małgorzata, Gao, Zan, Ashraf, Chowdhury M., Rajabpour, Siavash, Bumgardner, Clifton, Schwab, Yosyp, Damirchi, Behzad, Zhu, Jiadeng, Akbarian, Dooman, Klett, James W., van Duin, Adri C.T., and Li, Xiaodong. Sun . "Converting PBO fibers into carbon fibers by ultrafast carbonization". United States. https://doi.org/10.1016/j.carbon.2019.12.067. https://www.osti.gov/servlets/purl/1651295.
@article{osti_1651295,
title = {Converting PBO fibers into carbon fibers by ultrafast carbonization},
author = {Zhang, Liwen and Kowalik, Małgorzata and Gao, Zan and Ashraf, Chowdhury M. and Rajabpour, Siavash and Bumgardner, Clifton and Schwab, Yosyp and Damirchi, Behzad and Zhu, Jiadeng and Akbarian, Dooman and Klett, James W. and van Duin, Adri C.T. and Li, Xiaodong},
abstractNote = {Here, we report an ultrafast transformation of poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibers into car- bon fibers (CFs) by direct carbonization that eliminates high-cost oxidation in traditional CF conversion. Ultrafast heating and cooling render PBO-derived CFs superlative mechanical properties. ReaxFF atomistic-scale reactive molecular dynamics simulations unveil the PBO to CF conversion mechanism in which ultrafast heating suppresses the O-contained gas release, facilitating all-carbon rings alignment during the carbonization of PBO. These results offer new guidelines for identifying and evaluating alternative CF precursors and fresh perspectives on smart manufacturing of CFs.},
doi = {10.1016/j.carbon.2019.12.067},
journal = {Carbon},
number = n/a,
volume = 159,
place = {United States},
year = {Sun Dec 27 00:00:00 EST 2020},
month = {Sun Dec 27 00:00:00 EST 2020}
}

Journal Article:

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Carbon Fibers: Precursors, Manufacturing, and Properties
journal, May 2012

  • Frank, Erik; Hermanutz, Frank; Buchmeiser, Michael R.
  • Macromolecular Materials and Engineering, Vol. 297, Issue 6
  • DOI: 10.1002/mame.201100406

The effect of processing on the structure and properties of carbon fibers
journal, January 1998


Fabrication and Properties of Carbon Fibers
journal, December 2009


Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion
journal, February 1996


Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review
journal, May 2002


Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites
journal, March 2008


Preparation of carbon fibers from syndiotactic 1,2-polybutadiene
journal, September 1984

  • Ashitaka, Hidetomo; Kusuki, Yoshihiro; Yamamoto, Shuji
  • Journal of Applied Polymer Science, Vol. 29, Issue 9
  • DOI: 10.1002/app.1984.070290907

The effect of diameter on the mechanical properties of amorphous carbon fibres from linear low density polyethylene
journal, March 1991

  • Penning, J. P.; Lagcher, R.; Pennings, A. J.
  • Polymer Bulletin, Vol. 25, Issue 3, p. 405-412
  • DOI: 10.1007/BF00316913

Carbon fibers from poly (p-phenylene benzobisthiazole) (pbzt) fibers: conversion and morphological aspects
journal, January 1991


Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt
journal, January 1995


Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde
journal, January 2002


Lignin-based Carbon Fibers: Effect of Synthetic Polymer Blending on Fiber Properties
journal, April 2005


Direct carbonization of PBO fiber
journal, January 1994


Kinetics of carbonization and graphitization of PBO fiber
journal, May 1996


Factors limiting the tensile strength of PBO-based carbon fibers
journal, January 1996


Highly graphitized carbon fiber prepared from poly (p-phenylene-benzo-bis-oxazole) fiber
journal, January 2005


Activated carbon fibers from poly(p-phenylene benzobisoxazole)
journal, April 2008


Carbon Fibers: Precursor Systems, Processing, Structure, and Properties
journal, March 2014

  • Frank, Erik; Steudle, Lisa M.; Ingildeev, Denis
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201306129

Rigid-rod polymers. 2. Synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisthiazole units in the main chain
journal, July 1981

  • Wolfe, James F.; Loo, Bock H.; Arnold, F. E.
  • Macromolecules, Vol. 14, Issue 4
  • DOI: 10.1021/ma50005a005

Synthesis, spinning, and fiber mechanical properties of poly(p-phenylenebenzobisoxazole)
journal, July 1981


Some Physical and Mechanical Properties of Pbo Fiber
journal, January 1988


Rigid-rod polymeric fibers
journal, January 2006

  • Chae, Han Gi; Kumar, Satish
  • Journal of Applied Polymer Science, Vol. 100, Issue 1
  • DOI: 10.1002/app.22680

Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers
journal, January 1988


A Study of Poly(benzo[1,2- d :5,4- d ‘]bisoxazole-2,6-diyl-1,4-phenylene) Reactions at Elevated Temperatures
journal, October 1999

  • So, Ying-Hung; Froelicher, Stephen W.; Kaliszewski, Britton
  • Macromolecules, Vol. 32, Issue 20
  • DOI: 10.1021/ma990715q

Studies on the Thermal Degradation of Poly ( p -phenylene benzobisoxazole)
journal, October 2003

  • Tamargo-Martínez, K.; Villar-Rodil, S.; Paredes, J. I.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm034336u

Thermal decomposition of poly(p-phenylene benzobisoxazole) fibres: monitoring the chemical and nanostructural changes by Raman spectroscopy and scanning probe microscopy
journal, November 2004


Complementary X-ray scattering and high resolution imaging of nanostructure development in thermally treated PBO fibers
journal, August 2011


Comparative XRD, Raman, and TEM Study on Graphitization of PBO-Derived Carbon Fibers
journal, December 2011

  • Vázquez-Santos, M. Beatriz; Geissler, Erik; László, Krisztina
  • The Journal of Physical Chemistry C, Vol. 116, Issue 1
  • DOI: 10.1021/jp2084499

Atomistic Scale Analysis of the Carbonization Process for C/H/O/N-Based Polymers with the ReaxFF Reactive Force Field
journal, May 2019

  • Kowalik, Malgorzata; Ashraf, Chowdhury; Damirchi, Behzad
  • The Journal of Physical Chemistry B, Vol. 123, Issue 25
  • DOI: 10.1021/acs.jpcb.9b04298

A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
journal, January 2002

  • Brenner, Donald W.; Shenderova, Olga A.; Harrison, Judith A.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 4
  • DOI: 10.1088/0953-8984/14/4/312

Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon
journal, December 1988


Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane
journal, February 2011


ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
journal, February 2008

  • Chenoweth, Kimberly; van Duin, Adri C. T.; Goddard, William A.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 5
  • DOI: 10.1021/jp709896w

ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions
journal, January 2017

  • Ashraf, Chowdhury; Jain, Abhishek; Xuan, Yuan
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 7
  • DOI: 10.1039/C6CP08164A

Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study
journal, January 2019


Automated Discovery of Reaction Pathways, Rate Constants, and Transition States Using Reactive Molecular Dynamics Simulations
journal, May 2015

  • Döntgen, Malte; Przybylski-Freund, Marie-Dominique; Kröger, Leif C.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 6
  • DOI: 10.1021/acs.jctc.5b00201

Atomistic-scale insights into the crosslinking of polyethylene induced by peroxides
journal, November 2019


Modeling failure mechanisms of poly(p-phenylene terephthalamide) fiber using reactive potentials
journal, November 2015


ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

Ultrastructure of poly(p-phenylenebenzobisoxazole) fibers
journal, April 1991


Morphological study on poly-p-phenylenebenzobisoxazole (PBO) fiber
journal, January 1998


Unveiling Carbon Ring Structure Formation Mechanisms in Polyacrylonitrile-Derived Carbon Fibers
journal, October 2019

  • Zhu, Jiadeng; Gao, Zan; Kowalik, Malgorzata
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 45
  • DOI: 10.1021/acsami.9b15833

Narrow graphene nanoribbons from carbon nanotubes
journal, April 2009


Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram
journal, January 1946

  • Hermans, J. J.; Hermans, P. H.; Vermaas, D.
  • Recueil des Travaux Chimiques des Pays-Bas, Vol. 65, Issue 6
  • DOI: 10.1002/recl.19460650605