skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 12, 2020

Title: Direct-drive double-shell implosion: A platform for burning-plasma physics studies

Abstract

Double-shell ignition designs have been investigated with the indirect-drive inertial confinement fusion (ICF) scheme in both simulations and experiments in which the inner-shell kinetic energy was limited to ~10 to 15 kJ, even driven by megajoule-class lasers such as the National Ignition Facility. Since direct-drive ICF can couple more energy to the imploding shells, we have performed a detailed study on direct-drive double-shell (D 3S) implosions with state-of-the-art physics models implemented in radiation-hydrodynamic codes (LILAC and DRACO), including nonlocal thermal transport, cross-beam energy transfer (CBET), and first-principles-based material properties. To mitigate classical unstable interfaces, we have proposed the use of a tungsten/beryllium–mixed inner shell with gradient-density layers that can be made by magnetron sputtering. In our D 3S designs, a 70-μm-thick beryllium outer shell is driven symmetrically by a high-adiabat (α ≥ 10), 1.9-MJ laser pulse to a peak velocity of ~240 km/s. Upon spherical impact, the outer shell transfers ~30 to 40 kJ of kinetic energy to the inner shell filled with deuterium–tritium gas or liquid, giving neutron-yield energies of ~6 MJ in 1-D simulations. Two-dimensional high-mode DRACO simulations indicated that such high-adiabat D 3S implosions are not susceptible to laser imprint, but the long-wavelength perturbations from the lasermore » port configuration along with CBET can be detrimental to the target performance. Yet, neutron yields of ~0.3- to 1.0-MJ energies can still be obtained from our high-mode DRACO simulations. The robust α-particle bootstrap is readily reached, which could provide a viable platform for burning-plasma physics studies. Once CBET mitigation and/or more laser energy becomes available, we believe that breakeven or moderate energy gain might be feasible with the proposed D 3S scheme.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [2]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [3]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. General Atomics, San Diego, CA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1580430
Report Number(s):
2019-111, 1538
Journal ID: ISSN 2470-0045; PLEEE8; 2019-111, 1538, 2494
Grant/Contract Number:  
NA0003856
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 100; Journal Issue: 6; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Hu, S. X., Epstein, R., Theobald, W., Xu, H., Huang, H., Goncharov, V. N., Regan, S. P., McKenty, P. W., Betti, R., Campbell, E. M., and Montgomery, D. S. Direct-drive double-shell implosion: A platform for burning-plasma physics studies. United States: N. p., 2019. Web. doi:10.1103/PhysRevE.100.063204.
Hu, S. X., Epstein, R., Theobald, W., Xu, H., Huang, H., Goncharov, V. N., Regan, S. P., McKenty, P. W., Betti, R., Campbell, E. M., & Montgomery, D. S. Direct-drive double-shell implosion: A platform for burning-plasma physics studies. United States. doi:10.1103/PhysRevE.100.063204.
Hu, S. X., Epstein, R., Theobald, W., Xu, H., Huang, H., Goncharov, V. N., Regan, S. P., McKenty, P. W., Betti, R., Campbell, E. M., and Montgomery, D. S. Thu . "Direct-drive double-shell implosion: A platform for burning-plasma physics studies". United States. doi:10.1103/PhysRevE.100.063204.
@article{osti_1580430,
title = {Direct-drive double-shell implosion: A platform for burning-plasma physics studies},
author = {Hu, S. X. and Epstein, R. and Theobald, W. and Xu, H. and Huang, H. and Goncharov, V. N. and Regan, S. P. and McKenty, P. W. and Betti, R. and Campbell, E. M. and Montgomery, D. S.},
abstractNote = {Double-shell ignition designs have been investigated with the indirect-drive inertial confinement fusion (ICF) scheme in both simulations and experiments in which the inner-shell kinetic energy was limited to ~10 to 15 kJ, even driven by megajoule-class lasers such as the National Ignition Facility. Since direct-drive ICF can couple more energy to the imploding shells, we have performed a detailed study on direct-drive double-shell (D3S) implosions with state-of-the-art physics models implemented in radiation-hydrodynamic codes (LILAC and DRACO), including nonlocal thermal transport, cross-beam energy transfer (CBET), and first-principles-based material properties. To mitigate classical unstable interfaces, we have proposed the use of a tungsten/beryllium–mixed inner shell with gradient-density layers that can be made by magnetron sputtering. In our D3S designs, a 70-μm-thick beryllium outer shell is driven symmetrically by a high-adiabat (α ≥ 10), 1.9-MJ laser pulse to a peak velocity of ~240 km/s. Upon spherical impact, the outer shell transfers ~30 to 40 kJ of kinetic energy to the inner shell filled with deuterium–tritium gas or liquid, giving neutron-yield energies of ~6 MJ in 1-D simulations. Two-dimensional high-mode DRACO simulations indicated that such high-adiabat D3S implosions are not susceptible to laser imprint, but the long-wavelength perturbations from the laser port configuration along with CBET can be detrimental to the target performance. Yet, neutron yields of ~0.3- to 1.0-MJ energies can still be obtained from our high-mode DRACO simulations. The robust α-particle bootstrap is readily reached, which could provide a viable platform for burning-plasma physics studies. Once CBET mitigation and/or more laser energy becomes available, we believe that breakeven or moderate energy gain might be feasible with the proposed D3S scheme.},
doi = {10.1103/PhysRevE.100.063204},
journal = {Physical Review E},
number = 6,
volume = 100,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 12, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Optical properties of highly compressed polystyrene: An ab initio study
journal, October 2017


Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Reduction of early-time perturbation growth in ablatively driven laser targets using tailored density profiles
journal, August 1999

  • Metzler, Nathan; Velikovich, Alexander L.; Gardner, John H.
  • Physics of Plasmas, Vol. 6, Issue 8
  • DOI: 10.1063/1.873569

Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs
journal, April 2004

  • Milovich, J. L.; Amendt, P.; Marinak, M.
  • Physics of Plasmas, Vol. 11, Issue 4
  • DOI: 10.1063/1.1646161

Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
journal, May 2017


Rayleigh-Taylor Instability and Laser-Pellet Fusion
journal, September 1974


Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Low Fuel Convergence Path to Direct-Drive Fusion Ignition
journal, June 2016


First experiments on Revolver shell collisions at the OMEGA laser
journal, July 2019

  • Scheiner, Brett; Schmitt, Mark J.; Hsu, Scott C.
  • Physics of Plasmas, Vol. 26, Issue 7
  • DOI: 10.1063/1.5099975

Modeling and projecting implosion performance for the National Ignition Facility
journal, December 2018


Rayleigh-Taylor Growth Measurements in the Acceleration Phase of Spherical Implosions on OMEGA
journal, September 2009


Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Progress in Developing Novel Double-Shell Metal Targets Via Magnetron Sputtering
journal, December 2017


Recent fast electron energy transport experiments relevant to fast ignition inertial fusion
journal, September 2009


Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions
journal, May 2018

  • Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022181

First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions
journal, October 2015


From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes
journal, December 2018


Detailed diagnosis of a double-shell collision under realistic implosion conditions
journal, May 2006

  • Kyrala, G. A.; Gunderson, M. A.; Delamater, N. D.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2179047

High-performance inertial confinement fusion target implosions on OMEGA
journal, April 2011


Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
journal, March 2018

  • Clark, D. S.; Kritcher, A. L.; Yi, S. A.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5016874

The blind implosion-maker: Automated inertial confinement fusion experiment design
journal, June 2019

  • Hatfield, P. W.; Rose, S. J.; Scott, R. H. H.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5091985

Progress on LMJ targets for ignition
journal, August 2010


Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation
journal, April 2012

  • Robey, H. F.; Boehly, T. R.; Celliers, P. M.
  • Physics of Plasmas, Vol. 19, Issue 4
  • DOI: 10.1063/1.3694122

Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA
journal, October 2010

  • Hu, S. X.; Goncharov, V. N.; Radha, P. B.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3491467

The National Ignition Facility - applications for inertial fusion energy and high-energy-density science
journal, December 1999


First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications
journal, September 2014


Tripled yield in direct-drive laser fusion through statistical modelling
journal, January 2019


Polar direct drive on the National Ignition Facility
journal, May 2004

  • Skupsky, S.; Marozas, J. A.; Craxton, R. S.
  • Physics of Plasmas, Vol. 11, Issue 5, p. 2763-2770
  • DOI: 10.1063/1.1689665

Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA
journal, October 2012

  • Theobald, W.; Nora, R.; Lafon, M.
  • Physics of Plasmas, Vol. 19, Issue 10
  • DOI: 10.1063/1.4763556

Ignition and high gain with ultrapowerful lasers
journal, May 1994

  • Tabak, Max; Hammer, James; Glinsky, Michael E.
  • Physics of Plasmas, Vol. 1, Issue 5, p. 1626-1634
  • DOI: 10.1063/1.870664

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion
journal, May 2011

  • Edwards, M. J.; Lindl, J. D.; Spears, B. K.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592173

Indirect drive ablative Rayleigh–Taylor experiments with rugby hohlraums on OMEGA
journal, September 2009

  • Casner, A.; Galmiche, D.; Huser, G.
  • Physics of Plasmas, Vol. 16, Issue 9
  • DOI: 10.1063/1.3224027

Properties of warm dense polystyrene plasmas along the principal Hugoniot
journal, June 2014


Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
journal, August 2013

  • Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818280

Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

Stable and confined burn in a Revolver ignition capsule
journal, August 2018

  • Molvig, Kim; Schmitt, Mark J.; Betti, Riccardo
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5037224

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA
journal, August 2013

  • Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818427

Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium
journal, May 2011


Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions
journal, June 2010


Multiple spherically converging shock waves in liquid deuterium
journal, September 2011

  • Boehly, T. R.; Goncharov, V. N.; Seka, W.
  • Physics of Plasmas, Vol. 18, Issue 9
  • DOI: 10.1063/1.3640805

Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis
journal, May 2002

  • Amendt, Peter; Colvin, J. D.; Tipton, R. E.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459451

Hohlraum-Driven Mid- Z ( SiO 2 ) Double-Shell Implosions on the Omega Laser Facility and Their Scaling to NIF
journal, October 2009


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Design considerations for indirectly driven double shell capsules
journal, September 2018

  • Montgomery, D. S.; Daughton, W. S.; Albright, B. J.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5042478

Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator Materials
journal, December 2013


Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility
journal, May 2009

  • Boehly, T. R.; Munro, D.; Celliers, P. M.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3078422

Progress toward Ignition with Noncryogenic Double-Shell Capsules
journal, May 2000


Experimental Validation of the Two-Plasmon-Decay Common-Wave Process
journal, October 2012


First-principles equation-of-state table of deuterium for inertial confinement fusion applications
journal, December 2011


Hohlraum-Driven Ignitionlike Double-Shell Implosions on the Omega Laser Facility
journal, February 2005


Enhancement of Stimulated Brillouin Scattering due to Reflection of Light from Plasma Critical Surface
journal, September 1979


Crossed-beam energy transfer in implosion experiments on OMEGA
journal, December 2010

  • Igumenshchev, I. V.; Edgell, D. H.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3532817

Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations
journal, August 2015

  • Cao, Duc; Moses, Gregory; Delettrez, Jacques
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928445