DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic Field Directed Rare‐Earth Separations

Abstract

Abstract The separation of rare‐earth ions from one another is challenging due to their chemical and physical similarities. Nearly all rare‐earth separations rely upon small changes in ionic radii to direct speciation or reactivity. Herein, we show that the intrinsic magnetic properties of the rare‐earth ions impact the separations of light/heavy and selected heavy/heavy binary mixtures. Using TriNOx 3− ([{(2‐ t BuNO)C 6 H 4 CH 2 } 3 N] 3− ) rare‐earth complexes, we efficiently and selectively crystallized heavy rare earths (Tb–Yb) from a mixture with light rare earths (La and Nd) in the presence of an external Fe 14 Nd 2 B magnet, concomitant with the introduction of a concentration gradient (decrease in temperature). The optimal separation was observed for an equimolar mixture of La:Dy, which gave an enrichment factor of EF La:Dy =297±31 for the solid fraction, compared to EF La:Dy =159±22 in the absence of the field, and achieving a 99.7 % pure Dy sample in one step. These results indicate that the application of a magnetic field can improve performance in a molecular separation system for paramagnetic rare‐earth cations.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [1];  [1]; ORCiD logo [1]
  1. P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
  2. P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA, Eramet Ideas 1 rue Albert Einstein 78190 Trappes France
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1579370
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 59 Journal Issue: 5; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Higgins, Robert F., Cheisson, Thibault, Cole, Bren E., Manor, Brian C., Carroll, Patrick J., and Schelter, Eric J. Magnetic Field Directed Rare‐Earth Separations. Germany: N. p., 2019. Web. doi:10.1002/anie.201911606.
Higgins, Robert F., Cheisson, Thibault, Cole, Bren E., Manor, Brian C., Carroll, Patrick J., & Schelter, Eric J. Magnetic Field Directed Rare‐Earth Separations. Germany. https://doi.org/10.1002/anie.201911606
Higgins, Robert F., Cheisson, Thibault, Cole, Bren E., Manor, Brian C., Carroll, Patrick J., and Schelter, Eric J. Thu . "Magnetic Field Directed Rare‐Earth Separations". Germany. https://doi.org/10.1002/anie.201911606.
@article{osti_1579370,
title = {Magnetic Field Directed Rare‐Earth Separations},
author = {Higgins, Robert F. and Cheisson, Thibault and Cole, Bren E. and Manor, Brian C. and Carroll, Patrick J. and Schelter, Eric J.},
abstractNote = {Abstract The separation of rare‐earth ions from one another is challenging due to their chemical and physical similarities. Nearly all rare‐earth separations rely upon small changes in ionic radii to direct speciation or reactivity. Herein, we show that the intrinsic magnetic properties of the rare‐earth ions impact the separations of light/heavy and selected heavy/heavy binary mixtures. Using TriNOx 3− ([{(2‐ t BuNO)C 6 H 4 CH 2 } 3 N] 3− ) rare‐earth complexes, we efficiently and selectively crystallized heavy rare earths (Tb–Yb) from a mixture with light rare earths (La and Nd) in the presence of an external Fe 14 Nd 2 B magnet, concomitant with the introduction of a concentration gradient (decrease in temperature). The optimal separation was observed for an equimolar mixture of La:Dy, which gave an enrichment factor of EF La:Dy =297±31 for the solid fraction, compared to EF La:Dy =159±22 in the absence of the field, and achieving a 99.7 % pure Dy sample in one step. These results indicate that the application of a magnetic field can improve performance in a molecular separation system for paramagnetic rare‐earth cations.},
doi = {10.1002/anie.201911606},
journal = {Angewandte Chemie (International Edition)},
number = 5,
volume = 59,
place = {Germany},
year = {Thu Dec 12 00:00:00 EST 2019},
month = {Thu Dec 12 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/anie.201911606

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Selective Crystallization of Phosphoester Coordination Polymer for the Separation of Neodymium and Dysprosium: A Thermodynamic Approach
journal, November 2016

  • Tasaki-Handa, Yuiko; Abe, Yukie; Ooi, Kenta
  • The Journal of Physical Chemistry B, Vol. 120, Issue 49
  • DOI: 10.1021/acs.jpcb.6b09450

Experiments on the magnetic enrichment of rare-earth metal ions in aqueous solutions in a microflow device
journal, May 2019


Comparative Life Cycle Assessment of NdFeB Permanent Magnet Production from Different Rare Earth Deposits
journal, March 2018


Applying and advancing the economic resource scarcity potential (ESP) method for rare earth elements
journal, August 2019


Evaporation-Assisted Magnetic Separation of Rare-Earth Ions in Aqueous Solutions
journal, October 2017

  • Lei, Zhe; Fritzsche, Barbara; Eckert, Kerstin
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b07344

Sustainable Inorganic Chemistry: Metal Separations for Recycling
journal, January 2019


Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field
journal, July 2016


Magnetic field-flow fractionation using capillary tubing
journal, November 1986


Magnetomigration of Rare-Earth Ions Triggered by Concentration Gradients
journal, October 2017

  • Rodrigues, Isadora R.; Lukina, Liubov; Dehaeck, Sam
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 21
  • DOI: 10.1021/acs.jpclett.7b02226

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Development of Industrial Extractants into Functional Ionic Liquids for Environmentally Friendly Rare Earth Separation
journal, June 2014

  • Sun, Xiaoqi; Waters, Kristian E.
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 7
  • DOI: 10.1021/sc500255n

Life-Cycle Assessment of the Production of Rare-Earth Elements for Energy Applications: A Review
journal, November 2014


On the Movement of Paramagnetic Ions in an Inhomogeneous Magnetic Field
journal, March 2004

  • Fujiwara, M.; Chie, K.; Sawai, J.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 11
  • DOI: 10.1021/jp0303523

Rare earth separations by selective borate crystallization
journal, March 2017

  • Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14438

Exploiting single-ion anisotropy in the design of f-element single-molecule magnets
journal, January 2011

  • Rinehart, Jeffrey D.; Long, Jeffrey R.
  • Chemical Science, Vol. 2, Issue 11
  • DOI: 10.1039/c1sc00513h

Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates
journal, May 2018

  • Banerjee-Ghosh, Koyel; Ben Dor, Oren; Tassinari, Francesco
  • Science, Vol. 360, Issue 6395
  • DOI: 10.1126/science.aar4265

Separation of Ho3+ in Static Magnetic Field
journal, December 2016

  • Kołczyk, K.; Wojnicki, M.; Kutyła, D.
  • Archives of Metallurgy and Materials, Vol. 61, Issue 4
  • DOI: 10.1515/amm-2016-0308

Efficient Separation of Light Lanthanides(III) by Using Bis‐Lactam Phenanthroline Ligands
journal, March 2019

  • Healy, Mary R.; Ivanov, Alexander S.; Karslyan, Yana
  • Chemistry – A European Journal, Vol. 25, Issue 25
  • DOI: 10.1002/chem.201806443

Manipulation of micro- and nanostructure motion with magnetic fields
journal, January 2014

  • Rikken, Roger S. M.; Nolte, Roeland J. M.; Maan, Jan C.
  • Soft Matter, Vol. 10, Issue 9
  • DOI: 10.1039/C3SM52294F

Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry
journal, January 2017

  • Iranmanesh, M.; Hulliger, J.
  • Chemical Society Reviews, Vol. 46, Issue 19
  • DOI: 10.1039/C7CS00230K

Phosphoryl-Ligand Adducts of Rare Earth-TriNOx Complexes: Systematic Studies and Implications for Separations Chemistry
journal, January 2019


Magnetic separation of Dy(III) ions from homogeneous aqueous solutions
journal, December 2014

  • Pulko, B.; Yang, X.; Lei, Z.
  • Applied Physics Letters, Vol. 105, Issue 23
  • DOI: 10.1063/1.4903794

Electro-kinetic Separation of Rare Earth Elements Using a Redox-Active Ligand
journal, September 2017

  • Fang, Huayi; Cole, Bren E.; Qiao, Yusen
  • Angewandte Chemie International Edition, Vol. 56, Issue 43
  • DOI: 10.1002/anie.201706894

Enantioseparation by crystallization using magnetic substrates
journal, January 2019

  • Tassinari, Francesco; Steidel, Jakob; Paltiel, Shahar
  • Chemical Science, Vol. 10, Issue 20
  • DOI: 10.1039/C9SC00663J

Density-Based Diamagnetic Separation:  Devices for Detecting Binding Events and for Collecting Unlabeled Diamagnetic Particles in Paramagnetic Solutions
journal, September 2007

  • Winkleman, Adam; Perez-Castillejos, Raquel; Gudiksen, Katherine L.
  • Analytical Chemistry, Vol. 79, Issue 17
  • DOI: 10.1021/ac070500b

An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability
journal, September 2017

  • Zhang, Kuangyuan; Kleit, Andrew N.; Nieto, Antonio
  • Renewable and Sustainable Energy Reviews, Vol. 77
  • DOI: 10.1016/j.rser.2016.12.127

Separation of Transition Metal Ions in an Inhomogeneous Magnetic Field
journal, May 2001

  • Fujiwara, M.; Kodoi, D.; Duan, W.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 17
  • DOI: 10.1021/jp003562d

Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron
journal, February 2015


An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium
journal, May 2015

  • Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.
  • Angewandte Chemie International Edition, Vol. 54, Issue 28
  • DOI: 10.1002/anie.201501659

A molecular basis to rare earth separations for recycling: tuning the TriNOx ligand properties for improved performance
journal, January 2018

  • Cole, Bren E.; Falcones, Ingemar B.; Cheisson, Thibault
  • Chemical Communications, Vol. 54, Issue 73
  • DOI: 10.1039/C8CC04409K

Influence of an Inner-Sphere K + Ion on the Magnetic Behavior of N 2 3– Radical-Bridged Dilanthanide Complexes Isolated Using an External Magnetic Field
journal, February 2014

  • Meihaus, Katie R.; Corbey, Jordan F.; Fang, Ming
  • Inorganic Chemistry, Vol. 53, Issue 6
  • DOI: 10.1021/ic4030102

Intralanthanide Separation on Layered Titanium(IV) Organophosphate Materials via a Selective Transmetalation Process
journal, June 2018

  • Zhang, Wenzhong; Hietala, Sami; Khriachtchev, Leonid
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 26
  • DOI: 10.1021/acsami.8b04480

Movement and Diffusion of Paramagnetic Ions in a Magnetic Field
journal, July 2006

  • Fujiwara, M.; Mitsuda, K.; Tanimoto, Y.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 28
  • DOI: 10.1021/jp061482p

Magnetic Separation of Metal Ions
journal, December 2003

  • Chie, K.; Fujiwara, M.; Fujiwara, Y.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 51
  • DOI: 10.1021/jp030688c

Eine neue Methode zur Trennung der seltenen Erden
journal, November 1952

  • Noddack, W.; Wicht, E.
  • Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 56, Issue 9
  • DOI: 10.1002/bbpc.19520560910

Rare-earth elements market: A historical and financial perspective
journal, September 2017


The Lanthanide Contraction Revisited
journal, September 2007

  • Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.
  • Journal of the American Chemical Society, Vol. 129, Issue 36
  • DOI: 10.1021/ja072750f

Rare earth elements: Mendeleev’s bane, modern marvels
journal, January 2019


Electro-kinetic Separation of Rare Earth Elements Using a Redox-Active Ligand
journal, September 2017


An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium
journal, May 2015

  • Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.
  • Angewandte Chemie, Vol. 127, Issue 28
  • DOI: 10.1002/ange.201501659

Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures
journal, December 2016

  • Bogart, Justin A.; Cole, Bren E.; Boreen, Michael A.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 52
  • DOI: 10.1073/pnas.1612628113

Magnetophoretic Sprinting: A Study on the Magnetic Properties of Aqueous Lanthanide Solutions
journal, June 2018

  • Rodrigues, Isadora R.; Lukina, Liubov; Dehaeck, Sam
  • The Journal of Physical Chemistry C, Vol. 122, Issue 41
  • DOI: 10.1021/acs.jpcc.8b06471

Magnetomigration of rare-earth ions in inhomogeneous magnetic fields
journal, January 2016

  • Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer, Jan Fransaer
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 39
  • DOI: 10.1039/C6CP02575G

Zur Trennung der Seltenen Erden im inhomogenen Magnetfeld
journal, January 1958

  • Noddack, Walter; Noddack, Ida; Wicht, Elisabeth
  • Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 62, Issue 1
  • DOI: 10.1002/bbpc.19580620112

Magneto-paper electrophoresis in the separation of inorganic ions
journal, September 1983

  • Mukherjee, H. G.; Datta, Samir Kanti
  • Mikrochimica Acta, Vol. 79, Issue 5-6
  • DOI: 10.1007/BF01204826

Potential of different techniques of preferential crystallization for enantioseparation of racemic compound forming systems
journal, August 2009

  • Polenske, Daniel; Lorenz, Heike; Seidel-Morgenstern, Andreas
  • Chirality, Vol. 21, Issue 8
  • DOI: 10.1002/chir.20672