DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From NaZn4Sb3 to HT-Na1–xZn4–ySb3 : Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties

Abstract

Two new sodium zinc antimonides NaZn4Sb3 and $HT$-Na1-xZn4-ySb3 were synthesized by using reactive sodium hydride, NaH, as a precursor. The hydride route provides uniform mixing and comprehensive control over the composition, facilitating fast reactions and high-purity samples, whereas traditional synthesis using sodium metal results in inhomogeneous samples with a significant fraction of the more stable NaZnSb compound. NaZn4Sb3 crystalizes in the hexagonal $P$63/$mmc$ space group (No. 194, Z=2, a=4.43579(4) Å, c = 23.41553(9) Å), and is stable upon heating in vacuum up to 736 K. The layered crystal structure of NaZn4Sb3 is related to the structure of the well-studied thermoelectric antimonides AeZn2Sb2 (Ae = Ca, Sr, Eu). Upon heating in vacuum NaZn4Sb3 transforms to $HT$-Na1-xZn4-ySb3 (x = 0.047(3), $y$ = 0.135(1)) due to partial Na/Zn evaporation/elimination, as was determined from high-temperature in-situ synchrotron powder X-ray diffraction. $HT$-Na1-xZn4-ySb3 has a complex monoclinic structure with considerable degrees of structural disorder ($$P2_1/c$$ (No. 14, $Z$=32), a=19.5366(7) Å, b=14.7410(5) Å, c = 20.7808(7) Å, $β$ = 90.317(2)°) and is stable exclusively in a narrow temperature range of 736-885 K. Further heating of HT-Na1-xZn4-ySb3 leads to a reversible transformation to NaZnSb above 883 K. Both compounds exhibit similarly low thermal conductivity at room temperature (0.9 W∙m-1 K-1) and positive Seebeck coefficients (38–52 $μ$V/K) indicative of holes as the main charge carriers. However, resistivities of the two phases differ by two orders of magnitude.

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [1];  [2]; ORCiD logo [3];  [3]; ORCiD logo [4];  [4]; ORCiD logo [1]
  1. Iowa State Univ., Ames, IA (United States). Dept. of Chemistry
  2. Iowa State Univ., Ames, IA (United States). Dept. of Chemistry; Ames Lab., Ames, IA (United States)
  3. Ames Lab., Ames, IA (United States)
  4. Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States). Dept of Physics & Astronomy,
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1572381
Report Number(s):
IS-J 10066
Journal ID: ISSN 0897-4756; TRN: US2001128
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 21; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Gvozdetskyi, Volodymyr, Owens-Baird, Bryan, Hong, Sangki, Cox, Tori, Bhaskar, Gourab, Harmer, Colin, Sun, Yang, Zhang, Feng, Wang, Cai-Zhuang, Ho, Kai-Ming, and Zaikina, Julia V. From NaZn4Sb3 to HT-Na1–xZn4–ySb3 : Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties. United States: N. p., 2019. Web. doi:10.1021/acs.chemmater.9b02239.
Gvozdetskyi, Volodymyr, Owens-Baird, Bryan, Hong, Sangki, Cox, Tori, Bhaskar, Gourab, Harmer, Colin, Sun, Yang, Zhang, Feng, Wang, Cai-Zhuang, Ho, Kai-Ming, & Zaikina, Julia V. From NaZn4Sb3 to HT-Na1–xZn4–ySb3 : Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties. United States. https://doi.org/10.1021/acs.chemmater.9b02239
Gvozdetskyi, Volodymyr, Owens-Baird, Bryan, Hong, Sangki, Cox, Tori, Bhaskar, Gourab, Harmer, Colin, Sun, Yang, Zhang, Feng, Wang, Cai-Zhuang, Ho, Kai-Ming, and Zaikina, Julia V. Thu . "From NaZn4Sb3 to HT-Na1–xZn4–ySb3 : Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties". United States. https://doi.org/10.1021/acs.chemmater.9b02239. https://www.osti.gov/servlets/purl/1572381.
@article{osti_1572381,
title = {From NaZn4Sb3 to HT-Na1–xZn4–ySb3 : Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties},
author = {Gvozdetskyi, Volodymyr and Owens-Baird, Bryan and Hong, Sangki and Cox, Tori and Bhaskar, Gourab and Harmer, Colin and Sun, Yang and Zhang, Feng and Wang, Cai-Zhuang and Ho, Kai-Ming and Zaikina, Julia V.},
abstractNote = {Two new sodium zinc antimonides NaZn4Sb3 and $HT$-Na1-xZn4-ySb3 were synthesized by using reactive sodium hydride, NaH, as a precursor. The hydride route provides uniform mixing and comprehensive control over the composition, facilitating fast reactions and high-purity samples, whereas traditional synthesis using sodium metal results in inhomogeneous samples with a significant fraction of the more stable NaZnSb compound. NaZn4Sb3 crystalizes in the hexagonal $P$63/$mmc$ space group (No. 194, Z=2, a=4.43579(4) Å, c = 23.41553(9) Å), and is stable upon heating in vacuum up to 736 K. The layered crystal structure of NaZn4Sb3 is related to the structure of the well-studied thermoelectric antimonides AeZn2Sb2 (Ae = Ca, Sr, Eu). Upon heating in vacuum NaZn4Sb3 transforms to $HT$-Na1-xZn4-ySb3 (x = 0.047(3), $y$ = 0.135(1)) due to partial Na/Zn evaporation/elimination, as was determined from high-temperature in-situ synchrotron powder X-ray diffraction. $HT$-Na1-xZn4-ySb3 has a complex monoclinic structure with considerable degrees of structural disorder ($P2_1/c$ (No. 14, $Z$=32), a=19.5366(7) Å, b=14.7410(5) Å, c = 20.7808(7) Å, $β$ = 90.317(2)°) and is stable exclusively in a narrow temperature range of 736-885 K. Further heating of HT-Na1-xZn4-ySb3 leads to a reversible transformation to NaZnSb above 883 K. Both compounds exhibit similarly low thermal conductivity at room temperature (0.9 W∙m-1 K-1) and positive Seebeck coefficients (38–52 $μ$V/K) indicative of holes as the main charge carriers. However, resistivities of the two phases differ by two orders of magnitude.},
doi = {10.1021/acs.chemmater.9b02239},
journal = {Chemistry of Materials},
number = 21,
volume = 31,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds
journal, March 2015

  • Gautier, Romain; Zhang, Xiuwen; Hu, Linhua
  • Nature Chemistry, Vol. 7, Issue 4
  • DOI: 10.1038/nchem.2207

The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Panoramic Synthesis as an Effective Materials Discovery Tool: The System Cs/Sn/P/Se as a Test Case
journal, July 2017

  • Haynes, Alyssa S.; Stoumpos, Constantinos C.; Chen, Haijie
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b05423

Conceptual Inorganic Materials Discovery - A Road Map
journal, April 2015


The 2019 materials by design roadmap
journal, October 2018

  • Alberi, Kirstin; Nardelli, Marco Buongiorno; Zakutayev, Andriy
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 1
  • DOI: 10.1088/1361-6463/aad926

High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds
journal, October 2016


Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs
journal, September 2019

  • Gvozdetskyi, Volodymyr; Bhaskar, Gourab; Batuk, Maria
  • Angewandte Chemie International Edition, Vol. 58, Issue 44
  • DOI: 10.1002/anie.201907499

In situ studies of a platform for metastable inorganic crystal growth and materials discovery
journal, July 2014

  • Shoemaker, D. P.; Hu, Y. -J.; Chung, D. Y.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 30
  • DOI: 10.1073/pnas.1406211111

Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
journal, March 2017


In Situ and Ex Situ Studies of Platinum Nanocrystals: Growth and Evolution in Solution
journal, October 2009

  • Cheong, Soshan; Watt, John; Ingham, Bridget
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja9065688

In Situ Studies of Solvothermal Synthesis of Energy Materials
journal, March 2014

  • Jensen, Kirsten M. Ø.; Tyrsted, Christoffer; Bremholm, Martin
  • ChemSusChem, Vol. 7, Issue 6
  • DOI: 10.1002/cssc.201301042

MgSiAs: An Unexplored System with Promising Nonlinear Optical Properties
journal, May 2018

  • Woo, Katherine E.; Wang, Jian; Wu, Kui
  • Advanced Functional Materials, Vol. 28, Issue 30
  • DOI: 10.1002/adfm.201801589

Two-dimensional metal NaCu 6.3 Sb 3 and solid-state transformations of sodium copper antimonides
journal, January 2017

  • Owens-Baird, B.; Lee, S.; Kovnir, K.
  • Dalton Transactions, Vol. 46, Issue 37
  • DOI: 10.1039/C7DT02329D

Real-time atomistic observation of structural phase transformations in individual hafnia nanorods
journal, May 2017

  • Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15316

In Situ Neutron Diffraction Studies of the Metal Flux Growth of Ba/Yb/Mg/Si Intermetallics
journal, May 2019


Pulse plasma synthesis and chemical bonding in magnesium diboride
journal, April 2003


A Hydride Route to Ternary Alkali Metal Borides: A Case Study of Lithium Nickel Borides
journal, February 2019

  • Gvozdetskyi, Volodymyr; Hanrahan, Michael P.; Ribeiro, Raquel A.
  • Chemistry – A European Journal, Vol. 25, Issue 16
  • DOI: 10.1002/chem.201805398

Rapid Phase Screening via Hydride Route: A Discovery of K 8– x Zn 18+3 x Sb 16
journal, November 2018


Thermal Stability and Thermoelectric Properties of NaZnSb
journal, December 2018

  • Gvozdetskyi, Volodymyr; Owens-Baird, Bryan; Hong, Sangki
  • Materials, Vol. 12, Issue 1
  • DOI: 10.3390/ma12010048

Facile Synthesis of Ba 1– x K x Fe 2 As 2 Superconductors via Hydride Route
journal, November 2014

  • Zaikina, Julia V.; Batuk, Maria; Abakumov, Artem M.
  • Journal of the American Chemical Society, Vol. 136, Issue 48
  • DOI: 10.1021/ja509907r

Superconductor-in-an-Hour: Spark Plasma Synthesis of Co- and Ni-Doped BaFe 2 As 2
journal, November 2018


A versatile low temperature synthetic route to Zintl phase precursors: Na4Si4, Na4Ge4 and K4Ge4 as examples
journal, January 2009

  • Ma, Xuchu; Xu, Fen; Atkins, Tonya M.
  • Dalton Transactions, Vol. 0, Issue 46, p. 10250-10255
  • DOI: 10.1039/b913320h

Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties
journal, January 2012

  • Yi, Tanghong; Chen, Shaoping; Li, Shawn
  • Journal of Materials Chemistry, Vol. 22, Issue 47
  • DOI: 10.1039/c2jm35257e

Microstructure investigations of Yb- and Bi-doped Mg2Si prepared from metal hydrides for thermoelectric applications
journal, January 2017


Tuning Thermoelectric Properties of Type I Clathrate K 8– x Ba x Al 8+ x Si 38– x through Barium Substitution
journal, April 2016


Hydride Synthesis and Thermoelectric Properties of Type-I Clathrate K 8 E 8 Ge 38 (E = Al, Ga, In)
journal, December 2018


Zintl Chemistry for Designing High Efficiency Thermoelectric Materials
journal, February 2010

  • Toberer, Eric S.; May, Andrew F.; Snyder, G. Jeffrey
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901956r

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1-xZn2Sb2
journal, November 2005

  • Gascoin, F.; Ottensmann, S.; Stark, D.
  • Advanced Functional Materials, Vol. 15, Issue 11
  • DOI: 10.1002/adfm.200500043

Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu)
journal, January 2010

  • Toberer, Eric S.; May, Andrew F.; Melot, Brent C.
  • Dalton Trans., Vol. 39, Issue 4
  • DOI: 10.1039/B914172C

Yb 14 MnSb 11 :  New High Efficiency Thermoelectric Material for Power Generation
journal, April 2006

  • Brown, Shawna R.; Kauzlarich, Susan M.; Gascoin, Franck
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm060261t

The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties
journal, March 2019

  • Hu, Yufei; Cerretti, Giacomo; Kunz Wille, Elizabeth L.
  • Journal of Solid State Chemistry, Vol. 271
  • DOI: 10.1016/j.jssc.2018.12.037

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Structure validation in chemical crystallography
journal, January 2009

  • Spek, Anthony L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 2, p. 148-155
  • DOI: 10.1107/S090744490804362X

COSET : a program for deriving and testing merohedral and pseudo-merohedral twin laws
journal, January 2014


A versatile sample-environment cell for non-ambient X-ray scattering experiments
journal, July 2008

  • Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles
  • Journal of Applied Crystallography, Vol. 41, Issue 4
  • DOI: 10.1107/S0021889808020165

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties
journal, June 2004

  • Snyder, G. Jeffrey; Christensen, Mogens; Nishibori, Eiji
  • Nature Materials, Vol. 3, Issue 7
  • DOI: 10.1038/nmat1154

The Structure of α-Zn 4 Sb 3 :  Ordering of the Phonon-Glass Thermoelectric Material β-Zn 4 Sb 3
journal, December 2004

  • Nylén, Johanna; Andersson, Magnus; Lidin, Sven
  • Journal of the American Chemical Society, Vol. 126, Issue 50
  • DOI: 10.1021/ja044980p

Zn 13 Sb 10 :  A Structural and Landau Theoretical Analysis of Its Phase Transitions
journal, February 2006

  • Mozharivskyj, Yurij; Janssen, Yuri; Harringa, Joel L.
  • Chemistry of Materials, Vol. 18, Issue 3
  • DOI: 10.1021/cm0515505

Low-Temperature Structural Transitions in the Phonon-Glass Thermoelectric Material β-Zn 4 Sb 3 :  Ordering of Zn Interstitials and Defects
journal, February 2007

  • Nylén, Johanna; Lidin, Sven; Andersson, Magnus
  • Chemistry of Materials, Vol. 19, Issue 4
  • DOI: 10.1021/cm062384j

The updated Zn–Sb phase diagram. How to make pure Zn 13 Sb 10 (“Zn 4 Sb 3 ”).
journal, January 2018

  • Lo, Chun-Wan Timothy; Svitlyk, Volodymyr; Chernyshov, Dmitry
  • Dalton Transactions, Vol. 47, Issue 33
  • DOI: 10.1039/C8DT02521E

Notizen: LiZnSb, eine weitere ternäre Phase mit Wurtzitgerüst / LiZnSb, an Additional Ternary Phase with a Wurtzit-type Lattice
journal, December 1975

  • Schroeder, Gerhard; Schuster, Hans-Uwe
  • Zeitschrift für Naturforschung B, Vol. 30, Issue 11-12
  • DOI: 10.1515/znb-1975-11-1234

Ternary K 2 Zn 5 As 4 -type pnictides Rb 2 Cd 5 As 4 and Rb 2 Zn 5 Sb 4 , and the solid solution Rb 2 Cd 5 (As,Sb) 4
journal, April 2013

  • He, Hua; Stoyko, Stanislav S.; Mar, Arthur
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 69, Issue 5
  • DOI: 10.1107/S010827011300766X

The ZnSb structure; A further enquiry
journal, June 1964


Elusive β-Zn 8 Sb 7 : A New Zinc Antimonide Thermoelectric
journal, September 2015

  • Wang, Jian; Kovnir, Kirill
  • Journal of the American Chemical Society, Vol. 137, Issue 39
  • DOI: 10.1021/jacs.5b08214

Eight-Coordinated Arsenic in the Zintl Phases RbCd 4 As 3 and RbZn 4 As 3 : Synthesis and Structural Characterization
journal, September 2011

  • He, Hua; Tyson, Chauntae; Bobev, Svilen
  • Inorganic Chemistry, Vol. 50, Issue 17
  • DOI: 10.1021/ic2009418

Crystal structure of trisodium tectodiantimonidoindate, Na 3 InSb 2
journal, January 1991


Na 5 SnSb 3 und K 8 SnSb 4 , zwei neue Zintlphasen mit tetraedrischen SnSb 4 -Baueinheiten
journal, September 1988

  • Eisenmann, Brigitte; Klein, Jürgen
  • Zeitschrift für Naturforschung B, Vol. 43, Issue 9
  • DOI: 10.1515/znb-1988-0912

Dipotassium Sodium Diantimonidoindate, K2Na[InSb2], a compound with the polyanion?2[In2Sb2Sb4/2]6?
journal, October 1993

  • Carrillo-Cabrera, Wilder; Caroca-Canales, Nubia; Von Schnering, Hans Georg
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 619, Issue 10
  • DOI: 10.1002/zaac.19936191015

Characterization of Lorenz number with Seebeck coefficient measurement
journal, April 2015

  • Kim, Hyun-Sik; Gibbs, Zachary M.; Tang, Yinglu
  • APL Materials, Vol. 3, Issue 4
  • DOI: 10.1063/1.4908244

Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors
journal, January 1999