skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 24, 2020

Title: Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles

Abstract

We perform a coarse-graining analysis of the paradigmatic active matter model, active Brownian particles, yielding a continuum description in terms of balance laws for mass, linear and angular momentum, and energy. The derivation of the balance of linear momentum reveals that the active force manifests itself directly as a continuum-level body force proportional to an order parameter-like director field, which therefore requires its own evolution equation to complete the continuum description of the system. We derive this equation, demonstrating in the process that bulk currents may be sustained in homogeneous systems only in the presence of interparticle aligning interactions. Here, we perform a second coarse-graining of the balance of linear momentum and derive the expression for active or swim pressure in the case of mechanical equilibrium.

Authors:
ORCiD logo [1];  [2];  [2]
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; USDOE
OSTI Identifier:
1571986
Alternate Identifier(s):
OSTI ID: 1508684
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 150; Journal Issue: 16; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Epstein, Jeffrey M., Klymko, Katherine, and Mandadapu, Kranthi K. Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles. United States: N. p., 2019. Web. doi:10.1063/1.5054912.
Epstein, Jeffrey M., Klymko, Katherine, & Mandadapu, Kranthi K. Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles. United States. doi:10.1063/1.5054912.
Epstein, Jeffrey M., Klymko, Katherine, and Mandadapu, Kranthi K. Wed . "Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles". United States. doi:10.1063/1.5054912.
@article{osti_1571986,
title = {Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles},
author = {Epstein, Jeffrey M. and Klymko, Katherine and Mandadapu, Kranthi K.},
abstractNote = {We perform a coarse-graining analysis of the paradigmatic active matter model, active Brownian particles, yielding a continuum description in terms of balance laws for mass, linear and angular momentum, and energy. The derivation of the balance of linear momentum reveals that the active force manifests itself directly as a continuum-level body force proportional to an order parameter-like director field, which therefore requires its own evolution equation to complete the continuum description of the system. We derive this equation, demonstrating in the process that bulk currents may be sustained in homogeneous systems only in the presence of interparticle aligning interactions. Here, we perform a second coarse-graining of the balance of linear momentum and derive the expression for active or swim pressure in the case of mechanical equilibrium.},
doi = {10.1063/1.5054912},
journal = {Journal of Chemical Physics},
number = 16,
volume = 150,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 24, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach?
journal, April 2016

  • Trefz, Benjamin; Das, Subir K.; Egorov, Sergei A.
  • The Journal of Chemical Physics, Vol. 144, Issue 14
  • DOI: 10.1063/1.4945365

Vapour-liquid coexistence of an active Lennard-Jones fluid
journal, September 2016

  • Prymidis, Vasileios; Paliwal, Siddharth; Dijkstra, Marjolein
  • The Journal of Chemical Physics, Vol. 145, Issue 12
  • DOI: 10.1063/1.4963191

Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles
journal, June 2015

  • Speck, Thomas; Menzel, Andreas M.; Bialké, Julian
  • The Journal of Chemical Physics, Vol. 142, Issue 22
  • DOI: 10.1063/1.4922324

Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der Statistischen Mechanik
journal, January 1955


Statistical mechanics and hydrodynamics of bacterial suspensions
journal, August 2009

  • Baskaran, Aparna; Marchetti, M. Cristina
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 37
  • DOI: 10.1073/pnas.0906586106

Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions
journal, May 2017


Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics
journal, November 2017

  • Klymko, Katherine; Mandal, Dibyendu; Mandadapu, Kranthi K.
  • The Journal of Chemical Physics, Vol. 147, Issue 19
  • DOI: 10.1063/1.4997091

The Mechanics and Statistics of Active Matter
journal, August 2010


The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics
journal, June 1950

  • Irving, J. H.; Kirkwood, John G.
  • The Journal of Chemical Physics, Vol. 18, Issue 6
  • DOI: 10.1063/1.1747782

Formulas for determining local properties in molecular‐dynamics simulations: Shock waves
journal, January 1982

  • Hardy, Robert J.
  • The Journal of Chemical Physics, Vol. 76, Issue 1
  • DOI: 10.1063/1.442714

Rheology of Active-Particle Suspensions
journal, March 2004


The swim force as a body force
journal, January 2015


Colloidal transport by active filaments
journal, January 2017

  • Manna, Raj Kumar; Kumar, P. B. Sunil; Adhikari, R.
  • The Journal of Chemical Physics, Vol. 146, Issue 2
  • DOI: 10.1063/1.4972010

A homogenization method for thermomechanical continua using extensive physical quantities
journal, February 2012

  • Mandadapu, Kranthi K.; Sengupta, Arkaprabha; Papadopoulos, Panayiotis
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 468, Issue 2142
  • DOI: 10.1098/rspa.2011.0578

Curvature-induced activation of a passive tracer in an active bath
journal, September 2014


Lattice Model to Derive the Fluctuating Hydrodynamics of Active Particles with Inertia
journal, November 2017


Motility-Induced Phase Separation
journal, March 2015


Active Brownian particles: From individual to collective stochastic dynamics
journal, March 2012

  • Romanczuk, P.; Bär, M.; Ebeling, W.
  • The European Physical Journal Special Topics, Vol. 202, Issue 1
  • DOI: 10.1140/epjst/e2012-01529-y

Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles
journal, August 2017

  • Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura
  • The Journal of Chemical Physics, Vol. 147, Issue 8
  • DOI: 10.1063/1.4989764

Mechanical pressure and momentum conservation in dry active matter
journal, December 2017

  • Fily, Y.; Kafri, Y.; Solon, A. P.
  • Journal of Physics A: Mathematical and Theoretical, Vol. 51, Issue 4
  • DOI: 10.1088/1751-8121/aa99b6

Active matter at the interface between materials science and cell biology
journal, July 2017


Active Brownian motion tunable by light
journal, June 2012


Geometrically biased random walks in bacteria-driven micro-shuttles
journal, November 2010


Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic
journal, July 2007


Pressure and Phase Equilibria in Interacting Active Brownian Spheres
journal, May 2015


Active brownian particles and run-and-tumble particles: A comparative study
journal, July 2015

  • Solon, A. P.; Cates, M. E.; Tailleur, J.
  • The European Physical Journal Special Topics, Vol. 224, Issue 7
  • DOI: 10.1140/epjst/e2015-02457-0

Translation of Walter Noll’s “Derivation of the Fundamental Equations of Continuum Thermodynamics from Statistical Mechanics”
journal, April 2010

  • Lehoucq, Richard B.; Von Lilienfeld-Toal, Anatole
  • Journal of Elasticity, Vol. 100, Issue 1-2
  • DOI: 10.1007/s10659-010-9246-9

Living Crystals of Light-Activated Colloidal Surfers
journal, January 2013


Fluctuating hydrodynamics and microrheology of a dilute suspension of swimming bacteria
journal, July 2009


Tunable dynamics of microtubule-based active isotropic gels
journal, November 2014

  • Henkin, Gil; DeCamp, Stephen J.; Chen, Daniel T. N.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 372, Issue 2029
  • DOI: 10.1098/rsta.2014.0142

Odd viscosity in chiral active fluids
journal, November 2017

  • Banerjee, Debarghya; Souslov, Anton; Abanov, Alexander G.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01378-7

Bacterial ratchet motors
journal, May 2010

  • Di Leonardo, R.; Angelani, L.; Dell'Arciprete, D.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 21
  • DOI: 10.1073/pnas.0910426107

Anomalous thermomechanical properties of a self-propelled colloidal fluid
journal, May 2014


Pressure is not a state function for generic active fluids
journal, June 2015

  • Solon, A. P.; Fily, Y.; Baskaran, A.
  • Nature Physics, Vol. 11, Issue 8
  • DOI: 10.1038/nphys3377

When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation
journal, January 2013


Arrested phase separation in reproducing bacteria creates a generic route to pattern formation
journal, May 2010

  • Cates, M. E.; Marenduzzo, D.; Pagonabarraga, I.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 26
  • DOI: 10.1073/pnas.1001994107

Pressure in an exactly solvable model of active fluid
journal, July 2017

  • Marini Bettolo Marconi, Umberto; Maggi, Claudio; Paoluzzi, Matteo
  • The Journal of Chemical Physics, Vol. 147, Issue 2
  • DOI: 10.1063/1.4991731

Self-Propelled Janus Particles in a Ratchet: Numerical Simulations
journal, June 2013


Self-propulsion against a moving membrane: Enhanced accumulation and drag force
journal, September 2017


Nonequilibrium Equation of State in Suspensions of Active Colloids
journal, January 2015


The hydrodynamics of swimming microorganisms
journal, August 2009


Ideal bulk pressure of active Brownian particles
journal, June 2016


The Physics of Liquid Crystals
journal, May 1995

  • de Gennes, P. G.; Prost, J.; Pelcovits, Robert
  • Physics Today, Vol. 48, Issue 5
  • DOI: 10.1063/1.2808028