skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Machine Learning landscape of top taggers

Abstract

Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [6];  [5];  [7];  [7];  [8];  [9];  [10];  [1];  [7];  [11];  [10];  [12];  [13];  [14] more »;  [7];  [8];  [15];  [15];  [4];  [2];  [6] « less
  1. University of Hamburg
  2. Heidelberg University
  3. New York University
  4. Rutgers, The State University of New Jersey
  5. Jožef Stefan Institute
  6. King's College London
  7. University of British Columbia
  8. University of California, Santa Barbara
  9. Jožef Stefan Institute, University of Ljubljana
  10. Massachusetts Institute of Technology
  11. New York University, Rutgers, The State University of New Jersey
  12. Université catholique de Louvain
  13. Lawrence Berkeley National Laboratory, University of California, Berkeley
  14. Laboratory of Theoretical and High Energy Physics, National Institute for Subatomic Physics
  15. RWTH Aachen University
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1568892
Grant/Contract Number:  
AC02-05CH11231; SC-0011090; SC0012567
Resource Type:
Published Article
Journal Name:
SciPost Physics Proceedings
Additional Journal Information:
Journal Name: SciPost Physics Proceedings Journal Volume: 7 Journal Issue: 1; Journal ID: ISSN 2542-4653
Publisher:
Stichting SciPost
Country of Publication:
Netherlands
Language:
English

Citation Formats

Kasieczka, Gregor, Plehn, Tilman, Butter, Anja, Cranmer, Kyle, Debnath, Dipsikha, Dillon, Barry M., Fairbairn, Malcolm, Faroughy, Darius A., Fedorko, Wojtek, Gay, Christophe, Gouskos, Loukas, Kamenik, Jernej Fesel, Komiske, Patrick, Leiss, Simon, Lister, Alison, Macaluso, Sebastian, Metodiev, Eric, Moore, Liam, Nachman, Benjamin, Nordström, Karl, Pearkes, Jannicke, Qu, Huilin, Rath, Yannik, Rieger, Marcel, Shih, David, Thompson, Jennifer, and Varma, Sreedevi. The Machine Learning landscape of top taggers. Netherlands: N. p., 2019. Web. doi:10.21468/SciPostPhys.7.1.014.
Kasieczka, Gregor, Plehn, Tilman, Butter, Anja, Cranmer, Kyle, Debnath, Dipsikha, Dillon, Barry M., Fairbairn, Malcolm, Faroughy, Darius A., Fedorko, Wojtek, Gay, Christophe, Gouskos, Loukas, Kamenik, Jernej Fesel, Komiske, Patrick, Leiss, Simon, Lister, Alison, Macaluso, Sebastian, Metodiev, Eric, Moore, Liam, Nachman, Benjamin, Nordström, Karl, Pearkes, Jannicke, Qu, Huilin, Rath, Yannik, Rieger, Marcel, Shih, David, Thompson, Jennifer, & Varma, Sreedevi. The Machine Learning landscape of top taggers. Netherlands. doi:10.21468/SciPostPhys.7.1.014.
Kasieczka, Gregor, Plehn, Tilman, Butter, Anja, Cranmer, Kyle, Debnath, Dipsikha, Dillon, Barry M., Fairbairn, Malcolm, Faroughy, Darius A., Fedorko, Wojtek, Gay, Christophe, Gouskos, Loukas, Kamenik, Jernej Fesel, Komiske, Patrick, Leiss, Simon, Lister, Alison, Macaluso, Sebastian, Metodiev, Eric, Moore, Liam, Nachman, Benjamin, Nordström, Karl, Pearkes, Jannicke, Qu, Huilin, Rath, Yannik, Rieger, Marcel, Shih, David, Thompson, Jennifer, and Varma, Sreedevi. Tue . "The Machine Learning landscape of top taggers". Netherlands. doi:10.21468/SciPostPhys.7.1.014.
@article{osti_1568892,
title = {The Machine Learning landscape of top taggers},
author = {Kasieczka, Gregor and Plehn, Tilman and Butter, Anja and Cranmer, Kyle and Debnath, Dipsikha and Dillon, Barry M. and Fairbairn, Malcolm and Faroughy, Darius A. and Fedorko, Wojtek and Gay, Christophe and Gouskos, Loukas and Kamenik, Jernej Fesel and Komiske, Patrick and Leiss, Simon and Lister, Alison and Macaluso, Sebastian and Metodiev, Eric and Moore, Liam and Nachman, Benjamin and Nordström, Karl and Pearkes, Jannicke and Qu, Huilin and Rath, Yannik and Rieger, Marcel and Shih, David and Thompson, Jennifer and Varma, Sreedevi},
abstractNote = {Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.},
doi = {10.21468/SciPostPhys.7.1.014},
journal = {SciPost Physics Proceedings},
number = 1,
volume = 7,
place = {Netherlands},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.21468/SciPostPhys.7.1.014

Save / Share:

Works referenced in this record:

QCD or what?
journal, January 2019


The anti- k t jet clustering algorithm
journal, April 2008


Pulling out all the tops with computer vision and deep learning
journal, October 2018

  • Macaluso, Sebastian; Shih, David
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/JHEP10(2018)121

Deep-learned Top Tagging with a Lorentz Layer
journal, January 2018


JUNIPR: a framework for unsupervised machine learning in particle physics
journal, February 2019


The use of Multiple Measurements in Taxonomic Problems
journal, September 1936


Color-octet scalars at the CERN LHC
journal, May 2008


Jet substructure classification in high-energy physics with deep neural networks
journal, May 2016


Energy flow networks: deep sets for particle jets
journal, January 2019

  • Komiske, Patrick T.; Metodiev, Eric M.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/JHEP01(2019)121

How much information is in a jet?
journal, June 2017


Boosted objects: a probe of beyond the standard model physics
journal, June 2011


Seeing in Color: Jet Superstructure
journal, July 2010


Deep-learning top taggers or the end of QCD?
journal, May 2017

  • Kasieczka, Gregor; Plehn, Tilman; Russell, Michael
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)006

Infrared safety of a neural-net top tagging algorithm
journal, February 2019

  • Choi, Suyong; Lee, Seung J.; Perelstein, Maxim
  • Journal of High Energy Physics, Vol. 2019, Issue 2
  • DOI: 10.1007/JHEP02(2019)132

Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1
journal, July 2017


FastJet user manual: (for version 3.0.2)
journal, March 2012


Energy flow polynomials: a complete linear basis for jet substructure
journal, April 2018

  • Komiske, Patrick T.; Metodiev, Eric M.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2018, Issue 4
  • DOI: 10.1007/JHEP04(2018)013

Measuring Multijet Structure of Hadronic Energy Flow or, What is a jet?
journal, December 1997


Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012
journal, March 2014


Top tagging
journal, May 2012


Performance of top-quark and $$\varvec{W}$$ W -boson tagging with ATLAS in Run 2 of the LHC
journal, April 2019


Identifying boosted objects with N-subjettiness
journal, March 2011


Resonance searches with an updated top tagger
journal, June 2015

  • Kasieczka, Gregor; Plehn, Tilman; Schell, Torben
  • Journal of High Energy Physics, Vol. 2015, Issue 6
  • DOI: 10.1007/JHEP06(2015)203

Learning to classify from impure samples with high-dimensional data
journal, July 2018


Successive combination jet algorithm for hadron collisions
journal, October 1993


Jet Substructure as a New Higgs-Search Channel at the Large Hadron Collider
journal, June 2008


Top quark jets at the LHC
journal, April 2009


Lorentz Boost Networks: autonomous physics-inspired feature engineering
journal, June 2019


Substructure of high- p T jets at the LHC
journal, April 2009


Soft drop
journal, May 2014

  • Larkoski, Andrew J.; Marzani, Simone; Soyez, Gregory
  • Journal of High Energy Physics, Vol. 2014, Issue 5
  • DOI: 10.1007/JHEP05(2014)146

Maximizing boosted top identification by minimizing N-subjettiness
journal, February 2012


Stop reconstruction with tagged tops
journal, October 2010

  • Plehn, Tilman; Spannowsky, Michael; Takeuchi, Michihisa
  • Journal of High Energy Physics, Vol. 2010, Issue 10
  • DOI: 10.1007/JHEP10(2010)078

Finding physics signals with event deconstruction
journal, May 2014


Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks
journal, May 2012


Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks
journal, October 2008


Rivet user manual
journal, December 2013

  • Buckley, Andy; Butterworth, Jonathan; Grellscheid, David
  • Computer Physics Communications, Vol. 184, Issue 12
  • DOI: 10.1016/j.cpc.2013.05.021

Energy correlation functions for jet substructure
journal, June 2013

  • Larkoski, Andrew J.; Salam, Gavin P.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2013, Issue 6
  • DOI: 10.1007/JHEP06(2013)108

(Machine) learning to do more with less
journal, February 2018

  • Cohen, Timothy; Freytsis, Marat; Ostdiek, Bryan
  • Journal of High Energy Physics, Vol. 2018, Issue 2
  • DOI: 10.1007/JHEP02(2018)034

Classification without labels: learning from mixed samples in high energy physics
journal, October 2017

  • Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2017, Issue 10
  • DOI: 10.1007/JHEP10(2017)174

DELPHES 3: a modular framework for fast simulation of a generic collider experiment
journal, February 2014

  • de Favereau, J.; Delaere, C.; Demin, P.
  • Journal of High Energy Physics, Vol. 2014, Issue 2
  • DOI: 10.1007/JHEP02(2014)057

Variational autoencoders for new physics mining at the Large Hadron Collider
journal, May 2019

  • Cerri, Olmo; Nguyen, Thong Q.; Pierini, Maurizio
  • Journal of High Energy Physics, Vol. 2019, Issue 5
  • DOI: 10.1007/JHEP05(2019)036

New angles on energy correlation functions
journal, December 2016

  • Moult, Ian; Necib, Lina; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2016, Issue 12
  • DOI: 10.1007/JHEP12(2016)153

Jet-images — deep learning edition
journal, July 2016

  • de Oliveira, Luke; Kagan, Michael; Mackey, Lester
  • Journal of High Energy Physics, Vol. 2016, Issue 7
  • DOI: 10.1007/JHEP07(2016)069

Weakly supervised classification in high energy physics
journal, May 2017

  • Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)145

Finding top quarks with shower deconstruction
journal, March 2013


Searches for new particles using cone and cluster jet algorithms: a comparative study
journal, March 1994

  • Seymour, Michael H.
  • Zeitschrift für Physik C Particles and Fields, Vol. 62, Issue 1
  • DOI: 10.1007/BF01559532

Jet-images: computer vision inspired techniques for jet tagging
journal, February 2015

  • Cogan, Josh; Kagan, Michael; Strauss, Emanuel
  • Journal of High Energy Physics, Vol. 2015, Issue 2
  • DOI: 10.1007/JHEP02(2015)118

Using jet mass to discover vector quarks at the CERN LHC
journal, June 2007


Fat Jets for a Light Higgs Boson
journal, March 2010


An introduction to PYTHIA 8.2
journal, June 2015

  • Sjöstrand, Torbjörn; Ask, Stefan; Christiansen, Jesper R.
  • Computer Physics Communications, Vol. 191
  • DOI: 10.1016/j.cpc.2015.01.024

Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
journal, September 2017

  • de Oliveira, Luke; Paganini, Michela; Nachman, Benjamin
  • Computing and Software for Big Science, Vol. 1, Issue 1
  • DOI: 10.1007/s41781-017-0004-6

Playing tag with ANN: boosted top identification with pattern recognition
journal, July 2015

  • Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu
  • Journal of High Energy Physics, Vol. 2015, Issue 7
  • DOI: 10.1007/JHEP07(2015)086

QCD-aware recursive neural networks for jet physics
journal, January 2019

  • Louppe, Gilles; Cho, Kyunghyun; Becot, Cyril
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/JHEP01(2019)057

t ′ at the LHC: the physics of discovery
journal, March 2007


Parton shower uncertainties in jet substructure analyses with deep neural networks
journal, January 2017