DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical Study of C–H Bond Cleavage via Concerted Proton-Coupled Electron Transfer in Fluorenyl-Benzoates

Abstract

Developing new strategies to activate and cleave C–H bonds is crucial for a broad range of applications. Currently a new method for C–H bond activation using multi-site concerted proton-coupled electron transfer (PCET) involving intermolecular electron transfer to an oxidant coupled to intramolecular proton transfer was reported. For a series of oxidants reacting with 2-(9H-fluoren-9-yl)benzoate, experimental studies revealed an atypical Brønsted α, defined as the slope of the logarithm of the PCET rate constant versus the logarithm of the equilibrium constant or the scaled driving force. Herein this reaction is modeled with a vibronically nonadiabatic PCET theory. Hydrogen tunneling, thermal sampling of the proton donor–acceptor mode, solute and solvent reorganization, and contributions from excited vibronic states are found to play important roles. The calculations qualitatively reproduce the experimental observation of a Brønsted α significantly less than 0.5 and explain this shallow slope in terms of exoergic processes between pairs of electron–proton vibronic states. These fundamental mechanistic insights may guide the design of more effective strategies for C–H bond activation and cleavage.

Authors:
 [1];  [1]; ORCiD logo [1]
  1. Yale Univ., New Haven, CT (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Energy Frontier Research Center (EFRC) Center for Molecular Electrocatalysis (CME)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institutes of Health (NIH)
OSTI Identifier:
1566592
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 46; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Sayfutyarova, Elvira R., Goldsmith, Zachary K., and Hammes-Schiffer, Sharon. Theoretical Study of C–H Bond Cleavage via Concerted Proton-Coupled Electron Transfer in Fluorenyl-Benzoates. United States: N. p., 2018. Web. doi:10.1021/jacs.8b10461.
Sayfutyarova, Elvira R., Goldsmith, Zachary K., & Hammes-Schiffer, Sharon. Theoretical Study of C–H Bond Cleavage via Concerted Proton-Coupled Electron Transfer in Fluorenyl-Benzoates. United States. https://doi.org/10.1021/jacs.8b10461
Sayfutyarova, Elvira R., Goldsmith, Zachary K., and Hammes-Schiffer, Sharon. Thu . "Theoretical Study of C–H Bond Cleavage via Concerted Proton-Coupled Electron Transfer in Fluorenyl-Benzoates". United States. https://doi.org/10.1021/jacs.8b10461. https://www.osti.gov/servlets/purl/1566592.
@article{osti_1566592,
title = {Theoretical Study of C–H Bond Cleavage via Concerted Proton-Coupled Electron Transfer in Fluorenyl-Benzoates},
author = {Sayfutyarova, Elvira R. and Goldsmith, Zachary K. and Hammes-Schiffer, Sharon},
abstractNote = {Developing new strategies to activate and cleave C–H bonds is crucial for a broad range of applications. Currently a new method for C–H bond activation using multi-site concerted proton-coupled electron transfer (PCET) involving intermolecular electron transfer to an oxidant coupled to intramolecular proton transfer was reported. For a series of oxidants reacting with 2-(9H-fluoren-9-yl)benzoate, experimental studies revealed an atypical Brønsted α, defined as the slope of the logarithm of the PCET rate constant versus the logarithm of the equilibrium constant or the scaled driving force. Herein this reaction is modeled with a vibronically nonadiabatic PCET theory. Hydrogen tunneling, thermal sampling of the proton donor–acceptor mode, solute and solvent reorganization, and contributions from excited vibronic states are found to play important roles. The calculations qualitatively reproduce the experimental observation of a Brønsted α significantly less than 0.5 and explain this shallow slope in terms of exoergic processes between pairs of electron–proton vibronic states. These fundamental mechanistic insights may guide the design of more effective strategies for C–H bond activation and cleavage.},
doi = {10.1021/jacs.8b10461},
journal = {Journal of the American Chemical Society},
number = 46,
volume = 140,
place = {United States},
year = {Thu Nov 01 00:00:00 EDT 2018},
month = {Thu Nov 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Evolution of C–H Bond Functionalization from Methane to Methodology
journal, December 2015

  • Hartwig, John F.
  • Journal of the American Chemical Society, Vol. 138, Issue 1
  • DOI: 10.1021/jacs.5b08707

Understanding and exploiting C–H bond activation
journal, May 2002

  • Labinger, Jay A.; Bercaw, John E.
  • Nature, Vol. 417, Issue 6888
  • DOI: 10.1038/417507a

A new strategy to efficiently cleave and form C–H bonds using proton-coupled electron transfer
journal, July 2018

  • Markle, Todd F.; Darcy, Julia W.; Mayer, James M.
  • Science Advances, Vol. 4, Issue 7
  • DOI: 10.1126/sciadv.aat5776

Radical Initiation in the Class I Ribonucleotide Reductase:  Long-Range Proton-Coupled Electron Transfer?
journal, June 2003

  • Stubbe, JoAnne; Nocera, Daniel G.; Yee, Cyril S.
  • Chemical Reviews, Vol. 103, Issue 6
  • DOI: 10.1021/cr020421u

Probing concerted proton-electron transfer in phenol-imidazoles
journal, January 2008

  • Markle, T. F.; Rhile, I. J.; DiPasquale, A. G.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 24
  • DOI: 10.1073/pnas.0708967105

Proton-Coupled Electron Transfer in Solution, Proteins, and Electrochemistry
journal, November 2008

  • Hammes-Schiffer, Sharon; Soudackov, Alexander V.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 45
  • DOI: 10.1021/jp805876e

Proton-Coupled Electron Flow in Protein Redox Machines
journal, December 2010

  • Dempsey, Jillian L.; Winkler, Jay R.; Gray, Harry B.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr100182b

Proton-Coupled Electron Transfer
journal, April 2012

  • Weinberg, David R.; Gagliardi, Christopher J.; Hull, Jonathan F.
  • Chemical Reviews, Vol. 112, Issue 7
  • DOI: 10.1021/cr200177j

Proton-Coupled Electron Transfer: Moving Together and Charging Forward
journal, July 2015

  • Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04087

Concerted proton-coupled electron transfer from a metal-hydride complex
journal, January 2015

  • Bourrez, Marc; Steinmetz, Romain; Ott, Sascha
  • Nature Chemistry, Vol. 7, Issue 2
  • DOI: 10.1038/nchem.2157

Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities
journal, May 2016

  • Miller, David C.; Tarantino, Kyle T.; Knowles, Robert R.
  • Topics in Current Chemistry, Vol. 374, Issue 3
  • DOI: 10.1007/s41061-016-0030-6

Separating Proton and Electron Transfer Effects in Three-Component Concerted Proton-Coupled Electron Transfer Reactions
journal, July 2017

  • Morris, Wesley D.; Mayer, James M.
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b03562

Origins of Enzyme Catalysis: Experimental Findings for C–H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs
journal, December 2017

  • Klinman, Judith P.; Offenbacher, Adam R.; Hu, Shenshen
  • Journal of the American Chemical Society, Vol. 139, Issue 51
  • DOI: 10.1021/jacs.7b08418

Concerted One-Electron Two-Proton Transfer Processes in Models Inspired by the Tyr-His Couple of Photosystem II
journal, April 2017


Accelerating proton-coupled electron transfer of metal hydrides in catalyst model reactions
journal, July 2018


Hydrogen Atom Abstraction by Metal−Oxo Complexes:  Understanding the Analogy with Organic Radical Reactions
journal, August 1998

  • Mayer, James M.
  • Accounts of Chemical Research, Vol. 31, Issue 8
  • DOI: 10.1021/ar970171h

Derivation of rate expressions for nonadiabatic proton-coupled electron transfer reactions in solution
journal, August 2000

  • Soudackov, Alexander; Hammes-Schiffer, Sharon
  • The Journal of Chemical Physics, Vol. 113, Issue 6
  • DOI: 10.1063/1.482053

Quantum and dynamical effects of proton donor-acceptor vibrational motion in nonadiabatic proton-coupled electron transfer reactions
journal, January 2005

  • Soudackov, Alexander; Hatcher, Elizabeth; Hammes-Schiffer, Sharon
  • The Journal of Chemical Physics, Vol. 122, Issue 1
  • DOI: 10.1063/1.1814635

Theory of Coupled Electron and Proton Transfer Reactions
journal, December 2010

  • Hammes-Schiffer, Sharon; Stuchebrukhov, Alexei A.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr1001436

Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer
journal, June 2011

  • Auer, Benjamin; Fernandez, Laura E.; Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 133, Issue 21
  • DOI: 10.1021/ja201560v

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527

Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F
journal, October 1983

  • Clark, Timothy; Chandrasekhar, Jayaraman; Spitznagel, G�nther W.
  • Journal of Computational Chemistry, Vol. 4, Issue 3
  • DOI: 10.1002/jcc.540040303

The influence of polarization functions on molecular orbital hydrogenation energies
journal, January 1973

  • Hariharan, P. C.; Pople, J. A.
  • Theoretica Chimica Acta, Vol. 28, Issue 3
  • DOI: 10.1007/BF00533485

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations
journal, February 1987

  • Nelsen, Stephen F.; Blackstock, Silas C.; Kim, Yaesil
  • Journal of the American Chemical Society, Vol. 109, Issue 3
  • DOI: 10.1021/ja00237a007

On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I
journal, May 1956

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 24, Issue 5
  • DOI: 10.1063/1.1742723

Works referencing / citing this record:

Theoretical analysis of the inverted region in photoinduced proton-coupled electron transfer
journal, January 2019

  • Goldsmith, Zachary K.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
  • Faraday Discussions, Vol. 216
  • DOI: 10.1039/c8fd00240a