DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H2 Production

Abstract

A long-standing challenge in molecular electrocatalysis is to design catalysts that break away from the tradeoff between rate and overpotential arising from electronic scaling relationships. Here we report an inversion of the rate-overpotential correlation through system-level design of new [Ni(PR2NR'2)2]2+ electrocatalysts for the production of H2. The overpotential is lowered by an electron-withdrawing ligand, while the turnover frequency is increased by controlling the catalyst structural dynamics, using both ligand design and solvent viscosity. Here, the cumulative effect of controlling each of these system components is an electrocatalyst with a turnover frequency of 70,000 s–1 and an overpotential of 230 mV, corresponding to a 100-fold rate enhancement and a 170 mV reduction in overpotential compared to the parent nickel catalyst. The success of this system-level approach originates from the detailed mechanistic understanding of these catalysts, which enabled modifications of the catalyst and solvent to disfavor non-productive pathways.

Authors:
 [1];  [2]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); State Univ. of New York, Fredonia, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME); Battelle Memorial Institute, Columbus, OH (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1566354
Alternate Identifier(s):
OSTI ID: 1842948
Report Number(s):
PNNL-SA-130125
Journal ID: ISSN 2155-5435
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 4; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous); catalysis (heterogeneous); solar (fuels); bio-inspired; energy storage (including batteries and capacitors); hydrogen and fuel cells; charge transport; materials and chemistry by design; synthesis (novel materials); electrocatalysis; hydrogen; scaling relation; overpotential; nickel; proton relay; viscosity; reaction mechanism; amines; electrocatalysts; catalystsl solvents

Citation Formats

Klug, Christina M., Cardenas, Allan Jay P., Bullock, R. Morris, O’Hagan, Molly, and Wiedner, Eric S. Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H2 Production. United States: N. p., 2018. Web. doi:10.1021/acscatal.7b04379.
Klug, Christina M., Cardenas, Allan Jay P., Bullock, R. Morris, O’Hagan, Molly, & Wiedner, Eric S. Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H2 Production. United States. https://doi.org/10.1021/acscatal.7b04379
Klug, Christina M., Cardenas, Allan Jay P., Bullock, R. Morris, O’Hagan, Molly, and Wiedner, Eric S. Wed . "Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H2 Production". United States. https://doi.org/10.1021/acscatal.7b04379. https://www.osti.gov/servlets/purl/1566354.
@article{osti_1566354,
title = {Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H2 Production},
author = {Klug, Christina M. and Cardenas, Allan Jay P. and Bullock, R. Morris and O’Hagan, Molly and Wiedner, Eric S.},
abstractNote = {A long-standing challenge in molecular electrocatalysis is to design catalysts that break away from the tradeoff between rate and overpotential arising from electronic scaling relationships. Here we report an inversion of the rate-overpotential correlation through system-level design of new [Ni(PR2NR'2)2]2+ electrocatalysts for the production of H2. The overpotential is lowered by an electron-withdrawing ligand, while the turnover frequency is increased by controlling the catalyst structural dynamics, using both ligand design and solvent viscosity. Here, the cumulative effect of controlling each of these system components is an electrocatalyst with a turnover frequency of 70,000 s–1 and an overpotential of 230 mV, corresponding to a 100-fold rate enhancement and a 170 mV reduction in overpotential compared to the parent nickel catalyst. The success of this system-level approach originates from the detailed mechanistic understanding of these catalysts, which enabled modifications of the catalyst and solvent to disfavor non-productive pathways.},
doi = {10.1021/acscatal.7b04379},
journal = {ACS Catalysis},
number = 4,
volume = 8,
place = {United States},
year = {Wed Mar 07 00:00:00 EST 2018},
month = {Wed Mar 07 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 66 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
journal, January 2015

  • Jiao, Yan; Zheng, Yao; Jaroniec, Mietek
  • Chemical Society Reviews, Vol. 44, Issue 8
  • DOI: 10.1039/C4CS00470A

The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis
journal, June 2012

  • Costentin, Cyrille; Drouet, Samuel; Robert, Marc
  • Journal of the American Chemical Society, Vol. 134, Issue 27, p. 11235-11242
  • DOI: 10.1021/ja303560c

Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts
journal, May 2017

  • Lee, Katherine J.; Elgrishi, Noémie; Kandemir, Banu
  • Nature Reviews Chemistry, Vol. 1, Issue 5
  • DOI: 10.1038/s41570-017-0039

Iron-Only Hydrogenase Mimics. Thermodynamic Aspects of the Use of Electrochemistry to Evaluate Catalytic Efficiency for Hydrogen Generation
journal, November 2006

  • Felton, Greg A. N.; Glass, Richard S.; Lichtenberger, Dennis L.
  • Inorganic Chemistry, Vol. 45, Issue 23
  • DOI: 10.1021/ic060984e

H 2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation
journal, November 2010

  • Fourmond, Vincent; Jacques, Pierre-André; Fontecave, Marc
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic101187v

Determining the Overpotential for a Molecular Electrocatalyst
journal, December 2013

  • Appel, Aaron M.; Helm, Monte L.
  • ACS Catalysis, Vol. 4, Issue 2
  • DOI: 10.1021/cs401013v

Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry
journal, September 2014

  • Rountree, Eric S.; McCarthy, Brian D.; Eisenhart, Thomas T.
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic500658x

Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes
journal, July 2007

  • Hu, Xile; Brunschwig, Bruce S.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 129, Issue 29
  • DOI: 10.1021/ja067876b

Development and understanding of cobaloxime activity through electrochemical molecular catalyst screening
journal, January 2014

  • Wakerley, David W.; Reisner, Erwin
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 12
  • DOI: 10.1039/C4CP00453A

Breaking the Correlation between Energy Costs and Kinetic Barriers in Hydrogen Evolution via a Cobalt Pyridine-Diimine-Dioxime Catalyst
journal, August 2016


Development of Molecular Electrocatalysts for Energy Storage
journal, February 2014


Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO 2 -to-CO Electrochemical Conversion
journal, December 2016

  • Azcarate, Iban; Costentin, Cyrille; Robert, Marc
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b07014

Exclusion of Six-Coordinate Intermediates in the Electrochemical Reduction of CO2 Catalyzed by [Pd(triphosphine)(CH3CN)](BF4)2 Complexes
journal, December 1994

  • Bernatis, Paul R.; Miedaner, Alex; Haltiwanger, R. Curtis
  • Organometallics, Vol. 13, Issue 12
  • DOI: 10.1021/om00024a029

Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions
journal, October 2016


Molecular Cobalt Catalysts for O 2 Reduction: Low-Overpotential Production of H 2 O 2 and Comparison with Iron-Based Catalysts
journal, November 2017

  • Wang, Yu-Heng; Pegis, Michael L.; Mayer, James M.
  • Journal of the American Chemical Society, Vol. 139, Issue 46
  • DOI: 10.1021/jacs.7b09089

Homogeneous Ni Catalysts for H 2 Oxidation and Production: An Assessment of Theoretical Methods, from Density Functional Theory to Post Hartree−Fock Correlated Wave-Function Theory
journal, December 2010

  • Chen, Shentan; Raugei, Simone; Rousseau, Roger
  • The Journal of Physical Chemistry A, Vol. 114, Issue 48
  • DOI: 10.1021/jp106800n

Computing Free Energy Landscapes: Application to Ni-based Electrocatalysts with Pendant Amines for H 2 Production and Oxidation
journal, December 2013

  • Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris
  • ACS Catalysis, Vol. 4, Issue 1
  • DOI: 10.1021/cs401104w

Substituent Effects on Cobalt Diglyoxime Catalysts for Hydrogen Evolution
journal, November 2011

  • Solis, Brian H.; Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 133, Issue 47
  • DOI: 10.1021/ja208091e

Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2reductioncatalysts
journal, January 2012

  • Schneider, Jacob; Jia, Hongfei; Muckerman, James T.
  • Chem. Soc. Rev., Vol. 41, Issue 6
  • DOI: 10.1039/C1CS15278E

A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation
journal, August 2013

  • Shaw, Wendy J.; Helm, Monte L.; DuBois, Daniel L.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2013.01.003

Proton-Assisted Reduction of CO 2 by Cobalt Aminopyridine Macrocycles
journal, April 2016

  • Chapovetsky, Alon; Do, Thomas H.; Haiges, Ralf
  • Journal of the American Chemical Society, Vol. 138, Issue 18
  • DOI: 10.1021/jacs.6b01980

Electrochemical Reduction of CO2 Catalyzed by a Dinuclear Palladium Complex Containing a Bridging Hexaphosphine Ligand: Evidence for Cooperativity
journal, October 1995

  • Steffey, Bryan D.; Curtis, Calvin J.; DuBois, Daniel L.
  • Organometallics, Vol. 14, Issue 10
  • DOI: 10.1021/om00010a066

Identifying and Breaking Scaling Relations in Molecular Catalysis of Electrochemical Reactions
journal, August 2017

  • Pegis, Michael L.; Wise, Catherine F.; Koronkiewicz, Brian
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b05642

[Ni(P Ph 2 N C6H4X 2 ) 2 ] 2+ Complexes as Electrocatalysts for H 2 Production: Effect of Substituents, Acids, and Water on Catalytic Rates
journal, April 2011

  • Kilgore, Uriah J.; Roberts, John A. S.; Pool, Douglas H.
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja109755f

Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts
journal, January 2016

  • Wiedner, Eric S.; Brown, Houston J. S.; Helm, Monte L.
  • Journal of the American Chemical Society, Vol. 138, Issue 2
  • DOI: 10.1021/jacs.5b10853

Ab Initio-Based Kinetic Modeling for the Design of Molecular Catalysts: The Case of H 2 Production Electrocatalysts
journal, August 2015


Potential-Dependent Electrocatalytic Pathways: Controlling Reactivity with p K a for Mechanistic Investigation of a Nickel-Based Hydrogen Evolution Catalyst
journal, October 2015

  • Rountree, Eric S.; Dempsey, Jillian L.
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b08297

Controlling Proton Delivery through Catalyst Structural Dynamics
journal, September 2016

  • Cardenas, Allan Jay P.; Ginovska, Bojana; Kumar, Neeraj
  • Angewandte Chemie International Edition, Vol. 55, Issue 43
  • DOI: 10.1002/anie.201607460

Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays
journal, January 2006

  • Wilson, Aaron D.; Newell, Rachel H.; McNevin, Michael J.
  • Journal of the American Chemical Society, Vol. 128, Issue 1
  • DOI: 10.1021/ja056442y

A Copper-Catalyzed Variant of the Michaelis-Arbuzov Reaction
journal, April 2014

  • Ballester, Jorge; Gatignol, Jérémie; Schmidt, Guntram
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201301029

Synthesis, Properties, and Catalytic Applications of Caged, Compact Trialkylphosphine 4-Phenyl-1-phospha-4-silabicyclo[2.2.2]octane
journal, October 2008

  • Ochida, Atsuko; Hamasaka, Go; Yamauchi, Yoshihiro
  • Organometallics, Vol. 27, Issue 21
  • DOI: 10.1021/om8005728

Conformational Dynamics and Proton Relay Positioning in Nickel Catalysts for Hydrogen Production and Oxidation
journal, November 2013

  • Franz, James A.; O’Hagan, Molly; Ho, Ming-Hsun
  • Organometallics, Vol. 32, Issue 23
  • DOI: 10.1021/om400695w

Radical Cage Effects: The Prediction of Radical Cage Pair Recombination Efficiencies Using Microviscosity Across a Range of Solvent Types
journal, October 2017

  • Barry, Justin T.; Berg, Daniel J.; Tyler, David R.
  • Journal of the American Chemical Society, Vol. 139, Issue 41
  • DOI: 10.1021/jacs.7b04499

Radical Cage Effects: Comparison of Solvent Bulk Viscosity and Microviscosity in Predicting the Recombination Efficiencies of Radical Cage Pairs
journal, July 2016

  • Barry, Justin T.; Berg, Daniel J.; Tyler, David R.
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05432

Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts
journal, January 2015

  • Ho, Ming-Hsun; O'Hagan, Molly; Dupuis, Michel
  • Dalton Transactions, Vol. 44, Issue 24
  • DOI: 10.1039/C5DT00782H

Moving Protons with Pendant Amines: Proton Mobility in a Nickel Catalyst for Oxidation of Hydrogen
journal, September 2011

  • O’Hagan, Molly; Shaw, Wendy J.; Raugei, Simone
  • Journal of the American Chemical Society, Vol. 133, Issue 36, p. 14301-14312
  • DOI: 10.1021/ja201838x

Electrolyte Formulations Based on Dinitrile Solvents for High Voltage Li-Ion Batteries
journal, January 2013

  • Duncan, Hugues; Salem, Nuha; Abu-Lebdeh, Yaser
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.088306jes

Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile
journal, June 2012

  • Roberts, John A. S.; Bullock, R. Morris
  • Inorganic Chemistry, Vol. 52, Issue 7
  • DOI: 10.1021/ic302461q

Acidic ionic liquid/water solution as both medium and proton source for electrocatalytic H2 evolution by [Ni(P2N2)2]2+ complexes
journal, June 2012

  • Pool, D. H.; Stewart, M. P.; O'Hagan, M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1120208109

Advanced Carbon Electrode Materials for Molecular Electrochemistry
journal, July 2008

  • McCreery, Richard L.
  • Chemical Reviews, Vol. 108, Issue 7, p. 2646-2687
  • DOI: 10.1021/cr068076m

Toward the rational benchmarking of homogeneous H 2 -evolving catalysts
journal, January 2014

  • Artero, Vincent; Saveant, Jean-Michel
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE01709A

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

Electrocatalytic Hydrogen Production by [Ni(7P Ph 2 N H ) 2 ] 2+ : Removing the Distinction Between Endo- and Exo-Protonation Sites
journal, March 2015

  • Brown, Houston J. S.; Wiese, Stefan; Roberts, John A. S.
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/cs502132y

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Cyclic Diphosphine Ligands Containing One Pendant Amine
journal, February 2013

  • Stewart, Michael P.; Ho, Ming-Hsun; Wiese, Stefan
  • Journal of the American Chemical Society, Vol. 135, Issue 16
  • DOI: 10.1021/ja400181a

Hydrogen Evolution Catalyzed by Cobalt Diimine–Dioxime Complexes
journal, May 2015

  • Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent
  • Accounts of Chemical Research, Vol. 48, Issue 5
  • DOI: 10.1021/acs.accounts.5b00058

Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges
journal, January 2012

  • Du, Pingwu; Eisenberg, Richard
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03250c

Hydrogen Evolution Catalyzed by Cobaloximes
journal, December 2009

  • Dempsey, Jillian L.; Brunschwig, Bruce S.; Winkler, Jay R.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900253e

Linear Free Energy Relationships in the Hydrogen Evolution Reaction: Kinetic Analysis of a Cobaloxime Catalyst
journal, April 2016


The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics
journal, December 2014

  • Estes, Deven P.; Grills, David C.; Norton, Jack R.
  • Journal of the American Chemical Society, Vol. 136, Issue 50
  • DOI: 10.1021/ja508200g

Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production
journal, June 2016

  • Wiedner, Eric S.; Bullock, R. Morris
  • Journal of the American Chemical Society, Vol. 138, Issue 26
  • DOI: 10.1021/jacs.6b04779

A Computational Study of the Mechanism of Hydrogen Evolution by Cobalt(Diimine-Dioxime) Catalysts
journal, September 2013

  • Bhattacharjee, Anirban; Andreiadis, Eugen S.; Chavarot-Kerlidou, Murielle
  • Chemistry - A European Journal, Vol. 19, Issue 45
  • DOI: 10.1002/chem.201301860

Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages
journal, November 2009

  • Jacques, P. -A.; Artero, V.; Pecaut, J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 49
  • DOI: 10.1073/pnas.0907775106

Hydrogenases
journal, March 2014

  • Lubitz, Wolfgang; Ogata, Hideaki; Rüdiger, Olaf
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr4005814

Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases
journal, October 2007

  • Vincent, Kylie A.; Parkin, Alison; Armstrong, Fraser A.
  • Chemical Reviews, Vol. 107, Issue 10, p. 4366-4413
  • DOI: 10.1021/cr050191u

Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging
journal, October 2011

  • Madden, Christopher; Vaughn, Michael D.; Díez-Pérez, Ismael
  • Journal of the American Chemical Society, Vol. 134, Issue 3
  • DOI: 10.1021/ja207461t

Two Distinct Allosteric Active Sites Regulate Guest Binding Within a Fe 8 Mo 12 16+ Cubic Receptor
journal, May 2014

  • Ramsay, William J.; Nitschke, Jonathan R.
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja501809s

New protic salts of aprotic polar solvents
journal, April 2004


An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses
journal, August 1995

  • Wu, D. H.; Chen, A. D.; Johnson, C. S.
  • Journal of Magnetic Resonance, Series A, Vol. 115, Issue 2
  • DOI: 10.1006/jmra.1995.1176

Works referencing / citing this record:

Chicken fat for catalysis: a scaffold is as important for molecular complexes for energy transformations as it is for enzymes in catalytic function
journal, January 2019

  • Laureanti, Joseph A.; O'Hagan, Molly; Shaw, Wendy J.
  • Sustainable Energy & Fuels, Vol. 3, Issue 12
  • DOI: 10.1039/c9se00229d

Electrocatalytic hydrogen evolution with gallium hydride and ligand-centered reduction
journal, January 2019

  • Wang, Ni; Lei, Haitao; Zhang, Zongyao
  • Chemical Science, Vol. 10, Issue 8
  • DOI: 10.1039/c8sc05247f

Combining scaling relationships overcomes rate versus overpotential trade-offs in O 2 molecular electrocatalysis
journal, March 2020

  • Martin, Daniel J.; Mercado, Brandon Q.; Mayer, James M.
  • Science Advances, Vol. 6, Issue 11
  • DOI: 10.1126/sciadv.aaz3318

Boosting hydrogen evolution by using covalent frameworks of fluorinated cobalt porphyrins supported on carbon nanotubes
journal, January 2019

  • Xu, Gelun; Lei, Haitao; Zhou, Guojun
  • Chemical Communications, Vol. 55, Issue 84
  • DOI: 10.1039/c9cc06916j

A family of molecular nickel hydrogen evolution catalysts providing tunable overpotentials using ligand-centered proton-coupled electron transfer paths
journal, January 2018

  • Aimoto, Yutaro; Koshiba, Keita; Yamauchi, Kosei
  • Chemical Communications, Vol. 54, Issue 91
  • DOI: 10.1039/c8cc07467d

[FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water
journal, August 2018

  • Brezinski, William P.; Karayilan, Metin; Clary, Kayla E.
  • Angewandte Chemie International Edition, Vol. 57, Issue 37
  • DOI: 10.1002/anie.201804661

Metal vs. ligand protonation and the alleged proton-shuttling role of the azadithiolate ligand in catalytic H 2 formation with FeFe hydrogenase model complexes
journal, January 2019

  • Aster, Alexander; Wang, Shihuai; Mirmohades, Mohammad
  • Chemical Science, Vol. 10, Issue 21
  • DOI: 10.1039/c9sc00876d

Manganese Complexes: Hydrogen Generation and Oxidation: Manganese Complexes: Hydrogen Generation and Oxidation
journal, November 2019

  • Kaim, Vishakha; Kaur-Ghumaan, Sandeep
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 48
  • DOI: 10.1002/ejic.201900988

Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines
journal, January 2019

  • Liao, Qian; Liu, Tianbiao; Johnson, Samantha I.
  • Dalton Transactions, Vol. 48, Issue 15
  • DOI: 10.1039/c9dt00708c

A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties
journal, January 2020

  • Sun, Puhua; Yang, Dawei; Li, Ying
  • Dalton Transactions, Vol. 49, Issue 7
  • DOI: 10.1039/c9dt04493k

Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO 2 hydrogenation
journal, January 2019

  • Walsh, Aaron P.; Laureanti, Joseph A.; Katipamula, Sriram
  • Faraday Discussions, Vol. 215
  • DOI: 10.1039/c8fd00164b

[FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water
journal, August 2018

  • Brezinski, William P.; Karayilan, Metin; Clary, Kayla E.
  • Angewandte Chemie, Vol. 130, Issue 37
  • DOI: 10.1002/ange.201804661