DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CAPE Times P Explains Lightning Over Land But Not the Land–Ocean Contrast

Abstract

Here, the contemporaneous pointwise product of convective available potential energy (CAPE) and precipitation is shown to be a good proxy for lightning. In particular, the CAPE × P proxy for lightning faithfully replicates seasonal maps of lightning over the contiguous United States, as well as the shape, amplitude, and timing of the diurnal cycle in lightning. Globally, CAPE × P correctly predicts the distribution of flash rate densities over land, but it does not predict the pronounced land-ocean contrast in flash rate density; some factor other than CAPE or P is responsible for that land-ocean contrast.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5]; ORCiD logo [5]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Univ. of Washington, Seattle, WA (United States)
  4. National Weather Service Arkansas‐Red Basin River Forecast Center, Tulsa, OK (United States)
  5. State Univ. of New York at Albany, Albany, NY (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1563982
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 45; Journal Issue: 22; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Romps, David M., Charn, Alexander B., Holzworth, Robert H., Lawrence, William E., Molinari, John, and Vollaro, David. CAPE Times P Explains Lightning Over Land But Not the Land–Ocean Contrast. United States: N. p., 2018. Web. doi:10.1029/2018gl080267.
Romps, David M., Charn, Alexander B., Holzworth, Robert H., Lawrence, William E., Molinari, John, & Vollaro, David. CAPE Times P Explains Lightning Over Land But Not the Land–Ocean Contrast. United States. https://doi.org/10.1029/2018gl080267
Romps, David M., Charn, Alexander B., Holzworth, Robert H., Lawrence, William E., Molinari, John, and Vollaro, David. Fri . "CAPE Times P Explains Lightning Over Land But Not the Land–Ocean Contrast". United States. https://doi.org/10.1029/2018gl080267. https://www.osti.gov/servlets/purl/1563982.
@article{osti_1563982,
title = {CAPE Times P Explains Lightning Over Land But Not the Land–Ocean Contrast},
author = {Romps, David M. and Charn, Alexander B. and Holzworth, Robert H. and Lawrence, William E. and Molinari, John and Vollaro, David},
abstractNote = {Here, the contemporaneous pointwise product of convective available potential energy (CAPE) and precipitation is shown to be a good proxy for lightning. In particular, the CAPE × P proxy for lightning faithfully replicates seasonal maps of lightning over the contiguous United States, as well as the shape, amplitude, and timing of the diurnal cycle in lightning. Globally, CAPE × P correctly predicts the distribution of flash rate densities over land, but it does not predict the pronounced land-ocean contrast in flash rate density; some factor other than CAPE or P is responsible for that land-ocean contrast.},
doi = {10.1029/2018gl080267},
journal = {Geophysical Research Letters},
number = 22,
volume = 45,
place = {United States},
year = {Fri Nov 16 00:00:00 EST 2018},
month = {Fri Nov 16 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN
journal, August 2009

  • Cummins, Kenneth L.; Murphy, Martin J.
  • IEEE Transactions on Electromagnetic Compatibility, Vol. 51, Issue 3
  • DOI: 10.1109/TEMC.2009.2023450

Convective Available Potential Energy in the Environment of Oceanic and Continental Clouds: Correction and Comments
journal, December 1994


Global Distribution of Midnight Lightning: September 1977 to August 1978
journal, December 1986


Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics: THERMODYNAMICS, AEROSOLS, AND CONVECTION
journal, June 2015

  • Stolz, Douglas C.; Rutledge, Steven A.; Pierce, Jeffrey R.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 12
  • DOI: 10.1002/2014JD023033

Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth
journal, August 2006

  • Jacobson, Abram R.; Holzworth, Robert; Harlin, Jeremiah
  • Journal of Atmospheric and Oceanic Technology, Vol. 23, Issue 8
  • DOI: 10.1175/JTECH1902.1

Projected increase in lightning strikes in the United States due to global warming
journal, November 2014


Aerosol invigoration and restructuring of Atlantic convective clouds: AEROSOL RESTRUCTURING CONVECTIVE CLOUDS
journal, July 2005

  • Koren, Ilan; Kaufman, Yoram J.; Rosenfeld, Daniel
  • Geophysical Research Letters, Vol. 32, Issue 14
  • DOI: 10.1029/2005GL023187

Gridded lightning climatology from TRMM-LIS and OTD: Dataset description
journal, January 2014


Vertical Velocity in Oceanic Convection off Tropical Australia
journal, November 1994


Cloud-to-Ground Lightning in the United States: NLDN Results in the First Decade, 1989–98
journal, May 2001


North American Regional Reanalysis
journal, March 2006

  • Mesinger, Fedor; DiMego, Geoff; Kalnay, Eugenia
  • Bulletin of the American Meteorological Society, Vol. 87, Issue 3
  • DOI: 10.1175/BAMS-87-3-343

The physical origin of the land–ocean contrast in lightning activity
journal, December 2002


Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade: 1. Observations
journal, January 1999

  • Wacker, Robert S.; Orville, Richard E.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D2
  • DOI: 10.1029/1998JD200060

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Do Undiluted Convective Plumes Exist in the Upper Tropical Troposphere?
journal, February 2010

  • Romps, David M.; Kuang, Zhiming
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 2
  • DOI: 10.1175/2009JAS3184.1

Radar and Multisensor Precipitation Estimation Techniques in National Weather Service Hydrologic Operations
journal, February 2013


Relative detection efficiency of the World Wide Lightning Location Network: RELATIVE DETECTION EFFICIENCY OF WWLLN
journal, December 2012

  • Hutchins, M. L.; Holzworth, R. H.; Brundell, J. B.
  • Radio Science, Vol. 47, Issue 6
  • DOI: 10.1029/2012RS005049

Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor
journal, January 2007

  • Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard J.
  • Journal of Geophysical Research, Vol. 112, Issue D9
  • DOI: 10.1029/2006JD007787

Highlights of a New Ground-Based, Hourly Global Lightning Climatology
journal, September 2013

  • Virts, Katrina S.; Wallace, John M.; Hutchins, Michael L.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 9
  • DOI: 10.1175/BAMS-D-12-00082.1

The Twentieth Century Reanalysis Project
journal, January 2011

  • Compo, G. P.; Whitaker, J. S.; Sardeshmukh, P. D.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 654
  • DOI: 10.1002/qj.776

MSE Minus CAPE is the True Conserved Variable for an Adiabatically Lifted Parcel
journal, September 2015


A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology
journal, July 2017

  • Stolz, Douglas C.; Rutledge, Steven A.; Pierce, Jeffrey R.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 14
  • DOI: 10.1002/2016JD026220

The Twentieth Century Reanalysis Project
text, January 2011

  • Compo, Gilbert P.; Whitaker, Jeffrey S.; Sardeshmudh, Prashant D.
  • Royal Meteorological Society
  • DOI: 10.7892/boris.9227

Works referencing / citing this record:

Comparison of Six Lightning Parameterizations in CAM5 and the Impact on Global Atmospheric Chemistry
journal, December 2019

  • Gordillo‐Vázquez, F. J.; Pérez‐Invernón, F. J.; Huntrieser, H.
  • Earth and Space Science, Vol. 6, Issue 12
  • DOI: 10.1029/2019ea000873

Modeling Contributions of Continents and Oceans to the Diurnal Variation of the Global Electric Circuit
journal, May 2019

  • Slyunyaev, Nikolay N.; Ilin, Nikolay V.; Mareev, Evgeny A.
  • Geophysical Research Letters, Vol. 46, Issue 10
  • DOI: 10.1029/2019gl083166

Evaluating the Future of Lightning in Cloud‐Resolving Models
journal, December 2019


Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques
journal, November 2019

  • Mostajabi, Amirhossein; Finney, Declan L.; Rubinstein, Marcos
  • npj Climate and Atmospheric Science, Vol. 2, Issue 1
  • DOI: 10.1038/s41612-019-0098-0