DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methodology for designing grism stretchers for idler-based optical parametric chirped-pulse-amplification systems

Abstract

Powerful ultrafast lasers with wavelengths above 1 mm are in demand to create attosecond pulses and ultra-intense laser sources. A promising technology to achieve these laser sources uses the by-product from an optical parametric chirped-pulse amplifier, known as the idler. Compression of the idler to high peak powers requires a grism stretcher and a grating compressor. Grism stretchers have many more design parameters than conventional stretchers, complicating the design process. This paper presents a method for designing a grism stretcher and grating compressor that logically navigates the design process. This method was applied to design a grism stretcher for the optical parametric amplifier line that is under construction at the Laboratory for Laser Energetics to produce a 50-mJ, 115-fs pulse at 1170 nm.

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1557146
Alternate Identifier(s):
OSTI ID: 1545916
Report Number(s):
2018-289, 2469
Journal ID: ISSN 0740-3224; JOBPDE; 2018-289, 2469, 1509
Grant/Contract Number:  
NA0003856; SC0019135
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Optical Society of America. Part B, Optical Physics
Additional Journal Information:
Journal Volume: 36; Journal Issue: 8; Journal ID: ISSN 0740-3224
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Bucht, S., Haberberger, D., Bromage, J., and Froula, D. H. Methodology for designing grism stretchers for idler-based optical parametric chirped-pulse-amplification systems. United States: N. p., 2019. Web. doi:10.1364/JOSAB.36.002325.
Bucht, S., Haberberger, D., Bromage, J., & Froula, D. H. Methodology for designing grism stretchers for idler-based optical parametric chirped-pulse-amplification systems. United States. https://doi.org/10.1364/JOSAB.36.002325
Bucht, S., Haberberger, D., Bromage, J., and Froula, D. H. Thu . "Methodology for designing grism stretchers for idler-based optical parametric chirped-pulse-amplification systems". United States. https://doi.org/10.1364/JOSAB.36.002325. https://www.osti.gov/servlets/purl/1557146.
@article{osti_1557146,
title = {Methodology for designing grism stretchers for idler-based optical parametric chirped-pulse-amplification systems},
author = {Bucht, S. and Haberberger, D. and Bromage, J. and Froula, D. H.},
abstractNote = {Powerful ultrafast lasers with wavelengths above 1 mm are in demand to create attosecond pulses and ultra-intense laser sources. A promising technology to achieve these laser sources uses the by-product from an optical parametric chirped-pulse amplifier, known as the idler. Compression of the idler to high peak powers requires a grism stretcher and a grating compressor. Grism stretchers have many more design parameters than conventional stretchers, complicating the design process. This paper presents a method for designing a grism stretcher and grating compressor that logically navigates the design process. This method was applied to design a grism stretcher for the optical parametric amplifier line that is under construction at the Laboratory for Laser Energetics to produce a 50-mJ, 115-fs pulse at 1170 nm.},
doi = {10.1364/JOSAB.36.002325},
journal = {Journal of the Optical Society of America. Part B, Optical Physics},
number = 8,
volume = 36,
place = {United States},
year = {Thu Aug 01 00:00:00 EDT 2019},
month = {Thu Aug 01 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: (a) Typically energy conservation in an optical parametric amplifier (OPA) is described as a pump photon (blue arrow) decaying into a idler photon (red arrow) and signal photon (green arrow). (b) Alternatively, energy conservation can be viewed as a reflection across the degenerate frequency (ωp/2) where ωi ismore » a reflection of ωs both in the case of a single frequency (arrows) but also a broadband signal and idler (shaded regions). (c) Idler group delay (τi), the derivative of spectral phase, is also a reflection of the signal group delay (τs) across the degenerate frequency. As a result, τi changes its slope (GDD) compared to τs, but not its concavity (TOD).« less

Save / Share:

Works referenced in this record:

Mid-infrared laser filaments in air at a kilohertz repetition rate
journal, January 2016


Femtosecond mid-infrared study of YBa2Cu3O7−δ
journal, November 2000


Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O
journal, March 2005


Control of the electronic phase of a manganite by mode-selective vibrational excitation
journal, September 2007

  • Rini, Matteo; Tobey, Ra'anan; Dean, Nicky
  • Nature, Vol. 449, Issue 7158
  • DOI: 10.1038/nature06119

Observation of a Train of Attosecond Pulses from High Harmonic Generation
journal, June 2001


Fast Compression of Laser Beams to Highly Overcritical Powers
journal, May 1999


The attosecond nonlinear optics of bright coherent X-ray generation
journal, November 2010


Optimization of plasma amplifiers
journal, May 2017


Compression of amplified chirped optical pulses
journal, October 1985


Terawatt femtosecond Cr : forsterite laser system
journal, June 2004


Prospects for peak power scaling of Tm-doped fiber CPA systems
conference, January 2016

  • Gaida, Christian; Stutzki, Fabian; Gebhardt, Martin
  • Advanced Solid State Lasers, Lasers Congress 2016 (ASSL, LSC, LAC)
  • DOI: 10.1364/ASSL.2016.ATh3A.1

200 TW 45 fs laser based on optical parametric chirped pulse amplification
journal, January 2006

  • Lozhkarev, V. V.; Freidman, G. I.; Ginzburg, V. N.
  • Optics Express, Vol. 14, Issue 1
  • DOI: 10.1364/OPEX.14.000446

Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal
journal, April 1992


Some General Properties of Nonlinear Elements-Part I. General Energy Relations
journal, July 1956


Development of a novel large bandwidth front-end system for high peak power OPCPA systems
journal, January 2011

  • Lyachev, A.; Musgrave, I. O.; Tang, Y.
  • Optics Express, Vol. 19, Issue 17
  • DOI: 10.1364/OE.19.015824

Idler Pulse Compression with an Identical Positive Dispersive Media to Signal Pulse Stretcher in Ultrafast Optical-Parametric Chirped-Pulse Amplification
conference, January 2010

  • Akahane, Yutaka; Ogawa, Kanade; Tsuji, Koichi
  • Advanced Solid-State Photonics, Lasers, Sources and Related Photonic Devices
  • DOI: 10.1364/ASSP.2010.ATuA8

Supercontinuum-seeded few-cycle mid-infrared OPCPA system
journal, January 2016

  • Rigaud, Philippe; Van de Walle, Aymeric; Hanna, Marc
  • Optics Express, Vol. 24, Issue 23
  • DOI: 10.1364/OE.24.026494

Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 34 μm
journal, January 2013

  • Mayer, B. W.; Phillips, C. R.; Gallmann, L.
  • Optics Letters, Vol. 38, Issue 21
  • DOI: 10.1364/OL.38.004265

90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier
journal, January 2011

  • Andriukaitis, Giedrius; Balčiūnas, Tadas; Ališauskas, Skirmantas
  • Optics Letters, Vol. 36, Issue 15
  • DOI: 10.1364/OL.36.002755

Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields
journal, January 2015


5  μm few-cycle pulses with multi-gigawatt peak power at a 1  kHz repetition rate
journal, January 2017

  • von Grafenstein, Lorenz; Bock, Martin; Ueberschaer, Dennis
  • Optics Letters, Vol. 42, Issue 19
  • DOI: 10.1364/OL.42.003796

Stretcher-compressor design for OPCPA system with chirp reversal
conference, February 2012

  • Yakovlev, I. V.; Freidman, G. I.; Katin, E. V.
  • SPIE Proceedings
  • DOI: 10.1117/12.740173

Optical pulse compression with diffraction gratings
journal, September 1969


Negative dispersion using pairs of prisms
journal, January 1984

  • Fork, R. L.; Martinez, O. E.; Gordon, J. P.
  • Optics Letters, Vol. 9, Issue 5
  • DOI: 10.1364/OL.9.000150

New diffraction grating pair with very linear dispersion for laser pulse compression
journal, January 1993


Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses
journal, January 2006

  • Gibson, Emily A.; Gaudiosi, David M.; Kapteyn, Henry C.
  • Optics Letters, Vol. 31, Issue 22
  • DOI: 10.1364/OL.31.003363

Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation
journal, January 2006

  • Buckley, J. R.; Clark, S. W.; Wise, F. W.
  • Optics Letters, Vol. 31, Issue 9
  • DOI: 10.1364/OL.31.001340

Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor
journal, June 2007


Third-order spectral phase compensation in parabolic pulse compression
journal, January 2007

  • Zaouter, Y.; Papadopoulos, D. N.; Hanna, M.
  • Optics Express, Vol. 15, Issue 15
  • DOI: 10.1364/OE.15.009372

Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave
journal, January 2010


Ultrashort pulse fiber delivery with optimized dispersion control by reflection grisms at 800 nm
journal, January 2012

  • Kalashyan, Meri; Lefort, Claire; Martínez-León, Lluís
  • Optics Express, Vol. 20, Issue 23
  • DOI: 10.1364/OE.20.025624

Transmission Bragg-grating grisms for pulse compression
journal, September 2012


Pulse compression to 14  fs by third-order dispersion control in a hybrid grating-prism compressor
journal, January 2013

  • Zeytunyan, Aram; Yesayan, Garegin; Mouradian, Levon
  • Applied Optics, Vol. 52, Issue 32
  • DOI: 10.1364/AO.52.007755

Dispersion management of the SULF front end
journal, March 2017


Dispersion control for temporal contrast optimization
journal, January 2018

  • Tan, Jeryl; Forget, Nicolas; Borot, Antonin
  • Optics Express, Vol. 26, Issue 19
  • DOI: 10.1364/OE.26.025003

The role of dispersion in ultrafast optics
journal, January 2001

  • Walmsley, Ian; Waxer, Leon; Dorrer, Christophe
  • Review of Scientific Instruments, Vol. 72, Issue 1
  • DOI: 10.1063/1.1330575

Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences
journal, January 1998


A modular approach to the analytic calculation of spectral phase for grisms and other refractive/diffractive structures
journal, January 2008

  • Durfee, Charles G.; Squier, Jeff A.; Kane, Steve
  • Optics Express, Vol. 16, Issue 22
  • DOI: 10.1364/OE.16.018004

Bragg-angle blazing of diffraction gratings*
journal, January 1975

  • Hessel, A.; Schmoys, J.; Tseng, D. Y.
  • Journal of the Optical Society of America, Vol. 65, Issue 4
  • DOI: 10.1364/JOSA.65.000380

Global optimization of pulse compression in chirped pulse amplification
journal, January 1998

  • Bagnoud, V.; Salin, F.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, Issue 2
  • DOI: 10.1109/2944.686754

Ultrashort pulse generation in the mid-IR
journal, September 2015


Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
journal, January 2007

  • Kitamura, Rei; Pilon, Laurent; Jonasz, Miroslaw
  • Applied Optics, Vol. 46, Issue 33
  • DOI: 10.1364/AO.46.008118

Technology development for ultraintense all-OPCPA systems
journal, January 2019

  • Bromage, J.; Bahk, S. -W.; Begishev, I. A.
  • High Power Laser Science and Engineering, Vol. 7
  • DOI: 10.1017/hpl.2018.64

Analysis and optimization of optical parametric chirped pulse amplification
journal, January 2002

  • Ross, Ian N.; Matousek, Pavel; New, Geoffrey H. C.
  • Journal of the Optical Society of America B, Vol. 19, Issue 12
  • DOI: 10.1364/JOSAB.19.002945

Analytical calculation of spectral phase of grism pairs by the geometrical ray tracing method
journal, June 2016