DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

Abstract

We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm-2 in a practical LMB system. The increase in Li capacity utilization in each cycle causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1549089
Alternate Identifier(s):
OSTI ID: 1413509
Report Number(s):
PNNL-SA-125205
Journal ID: ISSN 2542-4351; S2542435117301319; PII: S2542435117301319
Grant/Contract Number:  
AC05-76RLO1830; AC05-76RL01830; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Joule
Additional Journal Information:
Journal Name: Joule Journal Volume: 2 Journal Issue: 1; Journal ID: ISSN 2542-4351
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; lithium capacity utilization; degradation layer; electrode loading; cycling performance; lithium metal battery

Citation Formats

Jiao, Shuhong, Zheng, Jianming, Li, Qiuyan, Li, Xing, Engelhard, Mark H., Cao, Ruiguo, Zhang, Ji-Guang, and Xu, Wu. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries. United States: N. p., 2018. Web. doi:10.1016/j.joule.2017.10.007.
Jiao, Shuhong, Zheng, Jianming, Li, Qiuyan, Li, Xing, Engelhard, Mark H., Cao, Ruiguo, Zhang, Ji-Guang, & Xu, Wu. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries. United States. https://doi.org/10.1016/j.joule.2017.10.007
Jiao, Shuhong, Zheng, Jianming, Li, Qiuyan, Li, Xing, Engelhard, Mark H., Cao, Ruiguo, Zhang, Ji-Guang, and Xu, Wu. Mon . "Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries". United States. https://doi.org/10.1016/j.joule.2017.10.007.
@article{osti_1549089,
title = {Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries},
author = {Jiao, Shuhong and Zheng, Jianming and Li, Qiuyan and Li, Xing and Engelhard, Mark H. and Cao, Ruiguo and Zhang, Ji-Guang and Xu, Wu},
abstractNote = {We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm-2 in a practical LMB system. The increase in Li capacity utilization in each cycle causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.},
doi = {10.1016/j.joule.2017.10.007},
journal = {Joule},
number = 1,
volume = 2,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2018},
month = {Mon Jan 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.joule.2017.10.007

Citation Metrics:
Cited by: 283 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Role of 1,3-Dioxolane and LiNO 3 Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries
journal, January 2016

  • Jaumann, Tony; Balach, Juan; Klose, Markus
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.1011603jes

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions
journal, January 2015

  • Erickson, Evan M.; Markevich, Elena; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0051514jes

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Superconcentrated electrolytes for a high-voltage lithium-ion battery
journal, June 2016

  • Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12032

Battery Separators
journal, October 2004

  • Arora, Pankaj; Zhang, Zhengming (John)
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020738u

Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries
journal, February 2016

  • Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 8
  • DOI: 10.1021/acsami.5b12517

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Solid-State Chemistry and Electrochemistry of LiCo[sub 1∕3]Ni[sub 1∕3]Mn[sub 1∕3]O[sub 2] for Advanced Lithium-Ion Batteries
journal, January 2007

  • Yabuuchi, Naoaki; Makimura, Yoshinari; Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 154, Issue 4
  • DOI: 10.1149/1.2455585

The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes
journal, September 2015

  • Xiang, Hongfa; Mei, Donghai; Yan, Pengfei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 37
  • DOI: 10.1021/acsami.5b05552

Ionic conductivity of pure and doped Li3N
journal, October 1983


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

The Application of Atomic Force Microscopy for the Study of Li Deposition Processes
journal, January 1996

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 143, Issue 11
  • DOI: 10.1149/1.1837248

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Electron and Ion Transport In Li 2 O 2
journal, May 2013

  • Gerbig, Oliver; Merkle, Rotraut; Maier, Joachim
  • Advanced Materials, Vol. 25, Issue 22
  • DOI: 10.1002/adma.201300264

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions
journal, August 2014

  • Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie
  • International Journal of Molecular Sciences, Vol. 15, Issue 8
  • DOI: 10.3390/ijms150814868

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth
journal, January 2016

  • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201504117

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Layered Lithium Insertion Material of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for Lithium-Ion Batteries
journal, July 2001

  • Ohzuku, Tsutomu; Makimura, Yoshinari
  • Chemistry Letters, Vol. 30, Issue 7
  • DOI: 10.1246/cl.2001.642

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Works referencing / citing this record:

Adiponitrile (C 6 H 8 N 2 ): A New Bi‐Functional Additive for High‐Performance Li‐Metal Batteries
journal, May 2019

  • Lee, Seon Hwa; Hwang, Jang‐Yeon; Park, Seong‐Jin
  • Advanced Functional Materials, Vol. 29, Issue 30
  • DOI: 10.1002/adfm.201902496

Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes
journal, October 2018


Exploring Self-Healing Liquid Na-K Alloy for Dendrite-Free Electrochemical Energy Storage
journal, October 2018


Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells
journal, July 2019


Nanoscaled Lithium Powders with Protection of Ionic Liquid for Highly Stable Rechargeable Lithium Metal Batteries
journal, October 2019


Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium
journal, April 2019

  • Betz, Johannes; Brinkmann, Jan‐Paul; Nölle, Roman
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201900574

Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase
journal, September 2019

  • Peng, Zhe; Song, Junhua; Huai, Liyuan
  • Advanced Energy Materials, Vol. 9, Issue 42
  • DOI: 10.1002/aenm.201901764

Stabilizing Lithium into Cross-Stacked Nanotube Sheets with an Ultra-High Specific Capacity for Lithium Oxygen Batteries
journal, January 2019


Graphitic Carbon Nitride (g‐C 3 N 4 ): An Interface Enabler for Solid‐State Lithium Metal Batteries
journal, January 2020


Graphitic Carbon Nitride (g‐C 3 N 4 ): An Interface Enabler for Solid‐State Lithium Metal Batteries
journal, January 2020

  • Huang, Ying; Chen, Bo; Duan, Jian
  • Angewandte Chemie International Edition, Vol. 59, Issue 9
  • DOI: 10.1002/anie.201914417

Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate
journal, February 2018


Antimony‐Doped Lithium Phosphate Artificial Solid Electrolyte Interphase for Dendrite‐Free Lithium‐Metal Batteries
journal, January 2019


Three‐Dimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonate‐Based Electrolytes
journal, March 2019

  • Yang, Yang; Zhao, Min; Geng, Hongbo
  • Chemistry – A European Journal, Vol. 25, Issue 19
  • DOI: 10.1002/chem.201805941

Investigation of two‐dimensional hf‐based MXenes as the anode materials for li/na‐ion batteries: A DFT study
journal, February 2019

  • Yang, Zhifang; Zheng, Yanping; Li, Wenliang
  • Journal of Computational Chemistry, Vol. 40, Issue 13
  • DOI: 10.1002/jcc.25789

Uniform Lithium Nucleation Guided by Atomically Dispersed Lithiophilic CoN x Sites for Safe Lithium Metal Batteries
journal, November 2018


Non‐Newtonian Fluid State K–Na Alloy for a Stretchable Energy Storage Device
journal, August 2019


Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
journal, September 2018


Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries
journal, July 2019


Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy
journal, January 2020


Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


High-energy lithium metal pouch cells with limited anode swelling and long stable cycles
journal, May 2019


Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
journal, April 2019


Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications
journal, January 2019

  • Hwang, Jang-Yeon; Park, Seong-Jin; Yoon, Chong S.
  • Energy & Environmental Science, Vol. 12, Issue 7
  • DOI: 10.1039/c9ee00716d

Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries
journal, January 2019

  • Hong, Dongki; Choi, Yuri; Ryu, Jaegeon
  • Journal of Materials Chemistry A, Vol. 7, Issue 35
  • DOI: 10.1039/c9ta06260b

Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries
journal, January 2020

  • Zhang, Xue-Qiang; Wang, Xin-Meng; Li, Bo-Quan
  • Journal of Materials Chemistry A, Vol. 8, Issue 8
  • DOI: 10.1039/c9ta12269a

Deterioration Analysis of Lithium Metal Anode in Full Cell during Long-Term Cycles
journal, January 2019

  • Nagasaki, Motoko; Nishikawa, Kei; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.1151912jes