DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range

Abstract

Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Currnet results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from 25 ° C to 25 ° C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We report that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4];  [5];  [4];  [4];  [6];  [6];  [7];  [8];  [1];  [1];  [4]; ORCiD logo [6];  [9];  [1];  [6];  [5];  [10] more »;  [11];  [6];  [8];  [12];  [8];  [8];  [6];  [13];  [6];  [4];  [5];  [14];  [15]; ORCiD logo [16];  [6];  [4];  [6];  [11];  [6];  [2];  [17];  [18];  [2];  [8];  [19];  [20]; ORCiD logo [21];  [1];  [18];  [6];  [6];  [6];  [6];  [6];  [22];  [1];  [23];  [6];  [5];  [4];  [6];  [8];  [5];  [5];  [6];  [8];  [4]; ORCiD logo [8];  [17];  [24];  [11];  [25]; ORCiD logo [26]; ORCiD logo [5];  [1] « less
  1. Univ. of Vienna (Austria)
  2. Univ. Innsbruck (Austria)
  3. Goethe Univ., Frankfurt (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Paul Scherrer Inst. (PSI), Villigen (Switzerland)
  4. Goethe Univ., Frankfurt (Germany)
  5. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  6. Univ. of Helsinki (Finland)
  7. Univ. of Lisbon (Portugal)
  8. Paul Scherrer Inst. (PSI), Villigen (Switzerland)
  9. Univ. Innsbruck (Austria); Harvard Univ., Cambridge, MA (United States)
  10. European Organization for Nuclear Research (CERN), Geneva (Switzerland); Univ. of Lisbon (Portugal)
  11. Univ. of California, Irvine, CA (United States)
  12. Univ. of Colorado, Boulder, CO (United States)
  13. European Organization for Nuclear Research (CERN), Geneva (Switzerland); Univ. of Leeds (United Kingdom)
  14. ETH Zurich (Switzerland)
  15. California Inst. of Technology (CalTech), Pasadena, CA (United States); Pusan National Univ., Busan (Korea)
  16. Goethe Univ., Frankfurt (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  17. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  18. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  19. Nanjing Univ. (China)
  20. Univ. of Eastern Finland, Kuopio (Finland)
  21. Aerodyne Research Inc., Billerica, MA (United States)
  22. Univ. of Helsinki (Finland); Finnish Meteorological Inst., Helsinki (Finland)
  23. Univ. of Beira Interior (Portugal)
  24. Univ. of Helsinki (Finland); Beijing Univ. of Chemical Technology (China)
  25. Univ. of Helsinki (Finland); Aerodyne Research Inc., Billerica, MA (United States)
  26. Univ. Innsbruck (Austria); Ionicon Analytik GmbH, Innsbruck (Austria)
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); German Federal Ministry of Education and Research (BMBF); Swiss National Science Foundation (SNSF); Austrian Research Funding Association
OSTI Identifier:
1547344
Grant/Contract Number:  
SC0014469
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 115; Journal Issue: 37; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; aerosols; nanoparticle growth; aerosol formation; CLOUD experiment; volatile organic compounds

Citation Formats

Stolzenburg, Dominik, Fischer, Lukas, Vogel, Alexander L., Heinritzi, Martin, Schervish, Meredith, Simon, Mario, Wagner, Andrea C., Dada, Lubna, Ahonen, Lauri R., Amorim, Antonio, Baccarini, Andrea, Bauer, Paulus S., Baumgartner, Bernhard, Bergen, Anton, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Buenrostro Mazon, Stephany, Chen, Dexian, Dias, António, Draper, Danielle C., Duplissy, Jonathan, El Haddad, Imad, Finkenzeller, Henning, Frege, Carla, Fuchs, Claudia, Garmash, Olga, Gordon, Hamish, He, Xucheng, Helm, Johanna, Hofbauer, Victoria, Hoyle, Christopher R., Kim, Changhyuk, Kirkby, Jasper, Kontkanen, Jenni, Kürten, Andreas, Lampilahti, Janne, Lawler, Michael, Lehtipalo, Katrianne, Leiminger, Markus, Mai, Huajun, Mathot, Serge, Mentler, Bernhard, Molteni, Ugo, Nie, Wei, Nieminen, Tuomo, Nowak, John B., Ojdanic, Andrea, Onnela, Antti, Passananti, Monica, Petäjä, Tuukka, Quéléver, Lauriane L. J., Rissanen, Matti P., Sarnela, Nina, Schallhart, Simon, Tauber, Christian, Tomé, António, Wagner, Robert, Wang, Mingyi, Weitz, Lena, Wimmer, Daniela, Xiao, Mao, Yan, Chao, Ye, Penglin, Zha, Qiaozhi, Baltensperger, Urs, Curtius, Joachim, Dommen, Josef, Flagan, Richard C., Kulmala, Markku, Smith, James N., Worsnop, Douglas R., Hansel, Armin, Donahue, Neil M., and Winkler, Paul M. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. United States: N. p., 2018. Web. doi:10.1073/pnas.1807604115.
Stolzenburg, Dominik, Fischer, Lukas, Vogel, Alexander L., Heinritzi, Martin, Schervish, Meredith, Simon, Mario, Wagner, Andrea C., Dada, Lubna, Ahonen, Lauri R., Amorim, Antonio, Baccarini, Andrea, Bauer, Paulus S., Baumgartner, Bernhard, Bergen, Anton, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Buenrostro Mazon, Stephany, Chen, Dexian, Dias, António, Draper, Danielle C., Duplissy, Jonathan, El Haddad, Imad, Finkenzeller, Henning, Frege, Carla, Fuchs, Claudia, Garmash, Olga, Gordon, Hamish, He, Xucheng, Helm, Johanna, Hofbauer, Victoria, Hoyle, Christopher R., Kim, Changhyuk, Kirkby, Jasper, Kontkanen, Jenni, Kürten, Andreas, Lampilahti, Janne, Lawler, Michael, Lehtipalo, Katrianne, Leiminger, Markus, Mai, Huajun, Mathot, Serge, Mentler, Bernhard, Molteni, Ugo, Nie, Wei, Nieminen, Tuomo, Nowak, John B., Ojdanic, Andrea, Onnela, Antti, Passananti, Monica, Petäjä, Tuukka, Quéléver, Lauriane L. J., Rissanen, Matti P., Sarnela, Nina, Schallhart, Simon, Tauber, Christian, Tomé, António, Wagner, Robert, Wang, Mingyi, Weitz, Lena, Wimmer, Daniela, Xiao, Mao, Yan, Chao, Ye, Penglin, Zha, Qiaozhi, Baltensperger, Urs, Curtius, Joachim, Dommen, Josef, Flagan, Richard C., Kulmala, Markku, Smith, James N., Worsnop, Douglas R., Hansel, Armin, Donahue, Neil M., & Winkler, Paul M. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. United States. https://doi.org/10.1073/pnas.1807604115
Stolzenburg, Dominik, Fischer, Lukas, Vogel, Alexander L., Heinritzi, Martin, Schervish, Meredith, Simon, Mario, Wagner, Andrea C., Dada, Lubna, Ahonen, Lauri R., Amorim, Antonio, Baccarini, Andrea, Bauer, Paulus S., Baumgartner, Bernhard, Bergen, Anton, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Buenrostro Mazon, Stephany, Chen, Dexian, Dias, António, Draper, Danielle C., Duplissy, Jonathan, El Haddad, Imad, Finkenzeller, Henning, Frege, Carla, Fuchs, Claudia, Garmash, Olga, Gordon, Hamish, He, Xucheng, Helm, Johanna, Hofbauer, Victoria, Hoyle, Christopher R., Kim, Changhyuk, Kirkby, Jasper, Kontkanen, Jenni, Kürten, Andreas, Lampilahti, Janne, Lawler, Michael, Lehtipalo, Katrianne, Leiminger, Markus, Mai, Huajun, Mathot, Serge, Mentler, Bernhard, Molteni, Ugo, Nie, Wei, Nieminen, Tuomo, Nowak, John B., Ojdanic, Andrea, Onnela, Antti, Passananti, Monica, Petäjä, Tuukka, Quéléver, Lauriane L. J., Rissanen, Matti P., Sarnela, Nina, Schallhart, Simon, Tauber, Christian, Tomé, António, Wagner, Robert, Wang, Mingyi, Weitz, Lena, Wimmer, Daniela, Xiao, Mao, Yan, Chao, Ye, Penglin, Zha, Qiaozhi, Baltensperger, Urs, Curtius, Joachim, Dommen, Josef, Flagan, Richard C., Kulmala, Markku, Smith, James N., Worsnop, Douglas R., Hansel, Armin, Donahue, Neil M., and Winkler, Paul M. Tue . "Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range". United States. https://doi.org/10.1073/pnas.1807604115. https://www.osti.gov/servlets/purl/1547344.
@article{osti_1547344,
title = {Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range},
author = {Stolzenburg, Dominik and Fischer, Lukas and Vogel, Alexander L. and Heinritzi, Martin and Schervish, Meredith and Simon, Mario and Wagner, Andrea C. and Dada, Lubna and Ahonen, Lauri R. and Amorim, Antonio and Baccarini, Andrea and Bauer, Paulus S. and Baumgartner, Bernhard and Bergen, Anton and Bianchi, Federico and Breitenlechner, Martin and Brilke, Sophia and Buenrostro Mazon, Stephany and Chen, Dexian and Dias, António and Draper, Danielle C. and Duplissy, Jonathan and El Haddad, Imad and Finkenzeller, Henning and Frege, Carla and Fuchs, Claudia and Garmash, Olga and Gordon, Hamish and He, Xucheng and Helm, Johanna and Hofbauer, Victoria and Hoyle, Christopher R. and Kim, Changhyuk and Kirkby, Jasper and Kontkanen, Jenni and Kürten, Andreas and Lampilahti, Janne and Lawler, Michael and Lehtipalo, Katrianne and Leiminger, Markus and Mai, Huajun and Mathot, Serge and Mentler, Bernhard and Molteni, Ugo and Nie, Wei and Nieminen, Tuomo and Nowak, John B. and Ojdanic, Andrea and Onnela, Antti and Passananti, Monica and Petäjä, Tuukka and Quéléver, Lauriane L. J. and Rissanen, Matti P. and Sarnela, Nina and Schallhart, Simon and Tauber, Christian and Tomé, António and Wagner, Robert and Wang, Mingyi and Weitz, Lena and Wimmer, Daniela and Xiao, Mao and Yan, Chao and Ye, Penglin and Zha, Qiaozhi and Baltensperger, Urs and Curtius, Joachim and Dommen, Josef and Flagan, Richard C. and Kulmala, Markku and Smith, James N. and Worsnop, Douglas R. and Hansel, Armin and Donahue, Neil M. and Winkler, Paul M.},
abstractNote = {Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Currnet results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from–25°C to25°C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We report that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.},
doi = {10.1073/pnas.1807604115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 37,
volume = 115,
place = {United States},
year = {Tue Aug 28 00:00:00 EDT 2018},
month = {Tue Aug 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 87 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
journal, January 2018

  • Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 2
  • DOI: 10.5194/acp-18-921-2018

Cloud droplet number enhanced by co-condensation of organic vapours
journal, May 2013

  • Topping, David; Connolly, Paul; McFiggans, Gordon
  • Nature Geoscience, Vol. 6, Issue 6
  • DOI: 10.1038/ngeo1809

Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation
journal, September 2007


A DMA-train for precision measurement of sub-10 nm aerosol dynamics
journal, January 2017

  • Stolzenburg, Dominik; Steiner, Gerhard; Winkler, Paul M.
  • Atmospheric Measurement Techniques, Vol. 10, Issue 4
  • DOI: 10.5194/amt-10-1639-2017

Temperature uniformity in the CERN CLOUD chamber
journal, January 2017

  • Dias, António; Ehrhart, Sebastian; Vogel, Alexander
  • Atmospheric Measurement Techniques, Vol. 10, Issue 12
  • DOI: 10.5194/amt-10-5075-2017

Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed
journal, January 2010

  • Nieminen, T.; Lehtinen, K. E. J.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 20
  • DOI: 10.5194/acp-10-9773-2010

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics
journal, January 2011

  • Donahue, N. M.; Epstein, S. A.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 7
  • DOI: 10.5194/acp-11-3303-2011

α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios
journal, April 2016

  • Kurtén, Theo; Tiusanen, Kirsi; Roldin, Pontus
  • The Journal of Physical Chemistry A, Vol. 120, Issue 16
  • DOI: 10.1021/acs.jpca.6b02196

New particle formation in the free troposphere: A question of chemistry and timing
journal, May 2016


PTR3: An Instrument for Studying the Lifecycle of Reactive Organic Carbon in the Atmosphere
journal, May 2017


The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions
journal, January 2012

  • Guenther, A. B.; Jiang, X.; Heald, C. L.
  • Geoscientific Model Development, Vol. 5, Issue 6
  • DOI: 10.5194/gmd-5-1471-2012

The contribution of organics to atmospheric nanoparticle growth
journal, June 2012

  • Riipinen, Ilona; Yli-Juuti, Taina; Pierce, Jeffrey R.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1499

Organic aerosol processing in tropical deep convective clouds: Development of a new model (CRM‐ORG) and implications for sources of particle number
journal, October 2015

  • Murphy, B. N.; Julin, J.; Riipinen, I.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 19
  • DOI: 10.1002/2015JD023551

Dynamic consideration of smog chamber experiments
journal, January 2017


Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles: ORGANIC CONDENSATION
journal, August 2011

  • Donahue, N. M.; Trump, E. R.; Pierce, J. R.
  • Geophysical Research Letters, Vol. 38, Issue 16
  • DOI: 10.1029/2011GL048115

Nanoparticle growth by particle-phase chemistry
journal, January 2018

  • Apsokardu, Michael J.; Johnston, Murray V.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 3
  • DOI: 10.5194/acp-18-1895-2018

The role of low-volatility organic compounds in initial particle growth in the atmosphere
journal, May 2016

  • Tröstl, Jasmin; Chuang, Wayne K.; Gordon, Hamish
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature18271

A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)
journal, January 2014

  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 4
  • DOI: 10.5194/amt-7-983-2014

The effect of acid–base clustering and ions on the growth of atmospheric nano-particles
journal, May 2016

  • Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11594

Causes and importance of new particle formation in the present-day and preindustrial atmospheres: CAUSES AND ROLE OF NEW PARTICLE FORMATION
journal, August 2017

  • Gordon, Hamish; Kirkby, Jasper; Baltensperger, Urs
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 16
  • DOI: 10.1002/2017JD026844

Organic aerosol formation via sulphate cluster activation: ORGANIC AEROSOL FORMATION
journal, February 2004

  • Kulmala, Markku; Kerminen, Veli-Matti; Anttila, Tatu
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D4
  • DOI: 10.1029/2003JD003961

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
journal, August 2011

  • Kirkby, Jasper; Curtius, Joachim; Almeida, João
  • Nature, Vol. 476, Issue 7361
  • DOI: 10.1038/nature10343

Ion-induced nucleation of pure biogenic particles
journal, May 2016

  • Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17953

Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
journal, October 2016

  • Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1602360113

Direct Observations of Atmospheric Aerosol Nucleation
journal, February 2013


Atmospheric autoxidation is increasingly important in urban and suburban North America
journal, December 2017

  • Praske, Eric; Otkjær, Rasmus V.; Crounse, John D.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 1
  • DOI: 10.1073/pnas.1715540115

Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
journal, October 2016

  • Wang, Jian; Krejci, Radovan; Giangrande, Scott
  • Nature, Vol. 539, Issue 7629, p. 416-419
  • DOI: 10.1038/nature19819

Efficiency of cloud condensation nuclei formation from ultrafine particles
journal, January 2007


Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
journal, January 2018

  • Frege, Carla; Ortega, Ismael K.; Rissanen, Matti P.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 1
  • DOI: 10.5194/acp-18-65-2018

Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF
journal, January 2012

  • Jokinen, T.; Sipilä, M.; Junninen, H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-4117-2012

Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics
journal, April 2006

  • Donahue, N. M.; Robinson, A. L.; Stanier, C. O.
  • Environmental Science & Technology, Vol. 40, Issue 8
  • DOI: 10.1021/es052297c

A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics
text, January 2018


The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions
journal, January 2012

  • Guenther, A. B.; Jiang, X.; Heald, C. L.
  • Geoscientific Model Development Discussions, Vol. 5, Issue 2
  • DOI: 10.5194/gmdd-5-1503-2012

A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics
text, January 2011

  • Donahue, Neil; Epstein, S. A.; Pandis, Spyros N.
  • Carnegie Mellon University
  • DOI: 10.1184/r1/6466640

Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
text, January 2018


The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
text, January 2016


Ion-induced nucleation of pure biogenic particles
text, January 2016


Works referencing / citing this record:

Molecular identification of organic vapors driving atmospheric nanoparticle growth
journal, September 2019


Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere
journal, January 2018

  • Vander Wall, A. C.; Lakey, P. S. J.; Rossich Molina, E.
  • Environmental Science: Processes & Impacts, Vol. 20, Issue 11
  • DOI: 10.1039/c8em00348c

Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation
journal, October 2019

  • Feketeová, Linda; Bertier, Paul; Salbaing, Thibaud
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 45
  • DOI: 10.1073/pnas.1911136116

Photochemistry of the Cloud Aqueous Phase: A Review
journal, January 2020


Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set
journal, January 2019

  • Stefenelli, Giulia; Jiang, Jianhui; Bertrand, Amelie
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
  • DOI: 10.5194/acp-19-11461-2019

Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany
journal, January 2019

  • Huang, Wei; Saathoff, Harald; Shen, Xiaoli
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 18
  • DOI: 10.5194/acp-19-11687-2019

Observations of highly oxidized molecules and particle nucleation in the atmosphere of Beijing
journal, January 2019

  • Brean, James; Harrison, Roy M.; Shi, Zongbo
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 23
  • DOI: 10.5194/acp-19-14933-2019

Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis
journal, January 2019

  • Quéléver, Lauriane L. J.; Kristensen, Kasper; Normann Jensen, Louise
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 11
  • DOI: 10.5194/acp-19-7609-2019

Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study
journal, January 2019

  • Tiszenkel, Lee; Stangl, Chris; Krasnomowitz, Justin
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 13
  • DOI: 10.5194/acp-19-8915-2019

Peroxy radical chemistry and the volatility basis set
journal, January 2020

  • Schervish, Meredith; Donahue, Neil M.
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 2
  • DOI: 10.5194/acp-20-1183-2020

Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
journal, January 2019


Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation
journal, October 2019

  • Feketeová, Linda; Bertier, Paul; Salbaing, Thibaud
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 45
  • DOI: 10.1073/pnas.1911136116

Photochemistry of the Cloud Aqueous Phase: A Review
journal, January 2020


Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set
journal, January 2019

  • Stefenelli, Giulia; Jiang, Jianhui; Bertrand, Amelie
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
  • DOI: 10.5194/acp-19-11461-2019

Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis
journal, January 2019

  • Quéléver, Lauriane L. J.; Kristensen, Kasper; Normann Jensen, Louise
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 11
  • DOI: 10.5194/acp-19-7609-2019

Molecular understanding of the suppression of new-particle formation by isoprene
journal, January 2020

  • Heinritzi, Martin; Dada, Lubna; Simon, Mario
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 20
  • DOI: 10.5194/acp-20-11809-2020

Peroxy radical chemistry and the volatility basis set
journal, January 2020

  • Schervish, Meredith; Donahue, Neil M.
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 2
  • DOI: 10.5194/acp-20-1183-2020