Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
- Univ. of Vienna (Austria); None
- Univ. Innsbruck (Austria)
- Goethe Univ., Frankfurt (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Paul Scherrer Inst. (PSI), Villigen (Switzerland)
- Goethe Univ., Frankfurt (Germany)
- Carnegie Mellon Univ., Pittsburgh, PA (United States)
- Univ. of Helsinki (Finland)
- Univ. of Lisbon (Portugal)
- Paul Scherrer Inst. (PSI), Villigen (Switzerland)
- Univ. of Vienna (Austria)
- Univ. Innsbruck (Austria); Harvard Univ., Cambridge, MA (United States)
- European Organization for Nuclear Research (CERN), Geneva (Switzerland); Univ. of Lisbon (Portugal)
- Univ. of California, Irvine, CA (United States)
- Univ. of Colorado, Boulder, CO (United States)
- European Organization for Nuclear Research (CERN), Geneva (Switzerland); Univ. of Leeds (United Kingdom)
- ETH Zurich (Switzerland)
- California Inst. of Technology (CalTech), Pasadena, CA (United States); Pusan National Univ., Busan (Korea)
- Goethe Univ., Frankfurt (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland)
- California Inst. of Technology (CalTech), Pasadena, CA (United States)
- European Organization for Nuclear Research (CERN), Geneva (Switzerland)
- Nanjing Univ. (China)
- Univ. of Eastern Finland, Kuopio (Finland)
- Aerodyne Research Inc., Billerica, MA (United States)
- Univ. of Helsinki (Finland); Finnish Meteorological Inst., Helsinki (Finland)
- Univ. of Beira Interior (Portugal)
- Univ. of Helsinki (Finland); Beijing Univ. of Chemical Technology (China)
- Univ. of Helsinki (Finland); Aerodyne Research Inc., Billerica, MA (United States)
- Univ. Innsbruck (Austria); Ionicon Analytik GmbH, Innsbruck (Austria)
Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Currnet results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from C to C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We report that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
- Research Organization:
- Univ. of California, Irvine, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); German Federal Ministry of Education and Research; Swiss National Science Foundation; Austrian Research Funding Association
- Grant/Contract Number:
- SC0014469
- OSTI ID:
- 1547344
- Journal Information:
- Proceedings of the National Academy of Sciences of the United States of America, Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Issue: 37 Vol. 115; ISSN 0027-8424
- Publisher:
- National Academy of SciencesCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Mid-infrared trace detection with parts-per-quadrillion quantitation accuracy: Expanding frontiers of radiocarbon sensing
Test of lepton flavor universality in and decays in proton-proton collisions at