skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on July 21, 2020

Title: Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model

Authors:
ORCiD logo; ; ;
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1546479
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Name: Physical Review B Journal Volume: 100 Journal Issue: 2; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Li, Shaozhi, Dee, Philip M., Khatami, Ehsan, and Johnston, Steven. Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.100.020302.
Li, Shaozhi, Dee, Philip M., Khatami, Ehsan, & Johnston, Steven. Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model. United States. doi:10.1103/PhysRevB.100.020302.
Li, Shaozhi, Dee, Philip M., Khatami, Ehsan, and Johnston, Steven. Mon . "Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model". United States. doi:10.1103/PhysRevB.100.020302.
@article{osti_1546479,
title = {Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model},
author = {Li, Shaozhi and Dee, Philip M. and Khatami, Ehsan and Johnston, Steven},
abstractNote = {},
doi = {10.1103/PhysRevB.100.020302},
journal = {Physical Review B},
number = 2,
volume = 100,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 21, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices
journal, June 2015


Machine learning in electronic-quantum-matter imaging experiments
journal, June 2019


Self-learning Monte Carlo method
journal, January 2017


Machine learning for molecular dynamics with strongly correlated electrons
journal, April 2019


Accelerated Monte Carlo simulations with restricted Boltzmann machines
journal, January 2017


Self-learning Monte Carlo method: Continuous-time algorithm
journal, October 2017


Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit
journal, January 2017

  • Schawinski, Kevin; Zhang, Ce; Zhang, Hantian
  • Monthly Notices of the Royal Astronomical Society: Letters
  • DOI: 10.1093/mnrasl/slx008

Studies of polaron motion
journal, November 1959


Numerical study of the two-dimensional Hubbard model
journal, July 1989


Machine Learning Phases of Strongly Correlated Fermions
journal, August 2017


Symmetry-enforced self-learning Monte Carlo method applied to the Holstein model
journal, July 2018


Probing many-body localization with neural networks
journal, June 2017


Neural Network Renormalization Group
journal, December 2018


Self-learning quantum Monte Carlo method in interacting fermion systems
journal, July 2017


Machine learning at the energy and intensity frontiers of particle physics
journal, August 2018


Demonstration of Model-Independent Control of the Longitudinal Phase Space of Electron Beams in the Linac-Coherent Light Source with Femtosecond Resolution
journal, July 2018


Machine learning density functional theory for the Hubbard model
journal, February 2019


Discovering phase transitions with unsupervised learning
journal, November 2016


Machine learning topological states
journal, November 2017


Learning thermodynamics with Boltzmann machines
journal, October 2016


Neural Networks for Modeling and Control of Particle Accelerators
journal, April 2016

  • Edelen, A. L.; Biedron, S. G.; Chase, B. E.
  • IEEE Transactions on Nuclear Science, Vol. 63, Issue 2
  • DOI: 10.1109/TNS.2016.2543203

Projective quantum Monte Carlo simulations guided by unrestricted neural network states
journal, December 2018


Ergodicity at large couplings with the determinant Monte Carlo algorithm
journal, November 1991

  • Scalettar, Richard T.; Noack, Reinhard M.; Singh, Rajiv R. P.
  • Physical Review B, Vol. 44, Issue 19
  • DOI: 10.1103/PhysRevB.44.10502

Self-learning Monte Carlo method and cumulative update in fermion systems
journal, June 2017


Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model
journal, June 2013


Quantum Loop Topography for Machine Learning
journal, May 2017


Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
journal, June 2017


Learning phase transitions by confusion
journal, February 2017

  • van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4037

Solving the quantum many-body problem with artificial neural networks
journal, February 2017


Competition of pairing and Peierls charge-density-wave correlations in a two-dimensional electron-phonon model
journal, July 1989

  • Scalettar, R. T.; Bickers, N. E.; Scalapino, D. J.
  • Physical Review B, Vol. 40, Issue 1
  • DOI: 10.1103/PhysRevB.40.197

Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Traveling-cluster approximation for uncorrelated amorphous systems
journal, November 1984


Neural-network quantum state tomography
journal, February 2018


Self-learning Monte Carlo with deep neural networks
journal, May 2018