DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Four-Electron Sulfur Electrode Hosting a Cu2+/Cu+ Redox Charge Carrier

Abstract

Abstract The elemental sulfur electrode with Cu 2+ as the charge carrier gives a four‐electron sulfur electrode reaction through the sequential conversion of S↔CuS↔Cu 2 S. The Cu‐S redox‐ion electrode delivers a high specific capacity of 3044 mAh g −1 based on the sulfur mass or 609 mAh g −1 based on the mass of Cu 2 S, the completely discharged product, and displays an unprecedently high potential of sulfur/metal sulfide reduction at 0.5 V vs. SHE. The Cu‐S electrode also exhibits an extremely low extent of polarization of 0.05 V and an outstanding cycle number of 1200 cycles retaining 72 % of the initial capacity at 12.5 A g −1 . The remarkable utility of this Cu‐S cathode is further demonstrated in a hybrid cell that employs an Zn metal anode and an anion‐exchange membrane as the separator, which yields an average cell discharge voltage of 1.15 V, the half‐cell specific energy of 547 Wh kg −1 based on the mass of the Cu 2 S/carbon composite cathode, and stable cycling over 110 cycles.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [1];  [2];  [3]; ORCiD logo [1]
  1. Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry
  2. Argonne National Laboratory, Lemont, IL (United States). X-ray Science Div., Advanced Photon Sources
  3. Argonne National Laboratory, Lemont, IL (United States). Chemical Sciences and Engineering Div.
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Science Foundation (NSF); USDOE
OSTI Identifier:
1574296
Alternate Identifier(s):
OSTI ID: 1545651
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 58; Journal Issue: 36; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; aqueous electrolytes; copper-sulfur chemistry; four-electron reaction; redox charge carriers; zinc battery

Citation Formats

Wu, Xianyong, Markir, Aaron, Ma, Lu, Xu, Yunkai, Jiang, Heng, Leonard, Daniel P., Shin, Woochul, Wu, Tianpin, Lu, Jun, and Ji, Xiulei. A Four-Electron Sulfur Electrode Hosting a Cu2+/Cu+ Redox Charge Carrier. United States: N. p., 2019. Web. doi:10.1002/anie.201905875.
Wu, Xianyong, Markir, Aaron, Ma, Lu, Xu, Yunkai, Jiang, Heng, Leonard, Daniel P., Shin, Woochul, Wu, Tianpin, Lu, Jun, & Ji, Xiulei. A Four-Electron Sulfur Electrode Hosting a Cu2+/Cu+ Redox Charge Carrier. United States. https://doi.org/10.1002/anie.201905875
Wu, Xianyong, Markir, Aaron, Ma, Lu, Xu, Yunkai, Jiang, Heng, Leonard, Daniel P., Shin, Woochul, Wu, Tianpin, Lu, Jun, and Ji, Xiulei. Sat . "A Four-Electron Sulfur Electrode Hosting a Cu2+/Cu+ Redox Charge Carrier". United States. https://doi.org/10.1002/anie.201905875. https://www.osti.gov/servlets/purl/1574296.
@article{osti_1574296,
title = {A Four-Electron Sulfur Electrode Hosting a Cu2+/Cu+ Redox Charge Carrier},
author = {Wu, Xianyong and Markir, Aaron and Ma, Lu and Xu, Yunkai and Jiang, Heng and Leonard, Daniel P. and Shin, Woochul and Wu, Tianpin and Lu, Jun and Ji, Xiulei},
abstractNote = {Abstract The elemental sulfur electrode with Cu 2+ as the charge carrier gives a four‐electron sulfur electrode reaction through the sequential conversion of S↔CuS↔Cu 2 S. The Cu‐S redox‐ion electrode delivers a high specific capacity of 3044 mAh g −1 based on the sulfur mass or 609 mAh g −1 based on the mass of Cu 2 S, the completely discharged product, and displays an unprecedently high potential of sulfur/metal sulfide reduction at 0.5 V vs. SHE. The Cu‐S electrode also exhibits an extremely low extent of polarization of 0.05 V and an outstanding cycle number of 1200 cycles retaining 72 % of the initial capacity at 12.5 A g −1 . The remarkable utility of this Cu‐S cathode is further demonstrated in a hybrid cell that employs an Zn metal anode and an anion‐exchange membrane as the separator, which yields an average cell discharge voltage of 1.15 V, the half‐cell specific energy of 547 Wh kg −1 based on the mass of the Cu 2 S/carbon composite cathode, and stable cycling over 110 cycles.},
doi = {10.1002/anie.201905875},
journal = {Angewandte Chemie (International Edition)},
number = 36,
volume = 58,
place = {United States},
year = {Sat Jul 13 00:00:00 EDT 2019},
month = {Sat Jul 13 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 64 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Electrochemical performance and characterization on the Cu-S RIC electrode. (a) GCD profiles of the S/AC electrode (50 wt.% sulfur) in a threeelectrode cell at a current rate of 100 mA g-1. The specific capacity and current rate are based on the sulfur mass in the S/AC nanocomposite; (b)more » Normalized XANES of the Cu-K edge spectra; (c) GCD profiles of the S/C electrode with large sulfur crystals at 10 mA g-1; (d) Ex situ XRD patterns at different SOC; (e) Schematics of the unit cells of S8, CuS, and Cu2S, showing the conversion pathways of the Cu-S RIC electrode; (f) Gibbs free energy changes and reaction potentials between Cu metal, S, CuS, and Cu2S. The redox couples of S/CuS, S/Cu2S, and CuS/Cu2S exhibit electron transfer numbers of 2, 4, and 2, which gives rise to the electromotive force (voltage) of 0.28 V (E1), 0.22 V (E2), and 0.17 V (E3), respectively, according to the equation of -ΔG = nEF.« less

Save / Share:

Works referenced in this record:

Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Reversible Oxygen Redox Chemistry in Aqueous Zinc‐Ion Batteries
journal, April 2019


An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode
journal, August 2018


An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte
journal, January 2014

  • Rothermel, Sergej; Meister, Paul; Schmuelling, Guido
  • Energy Environ. Sci., Vol. 7, Issue 10
  • DOI: 10.1039/C4EE01873G

Regulating Fast Anionic Redox for High-Voltage Aqueous Hydrogen-Ion-based Energy Storage
journal, December 2018

  • Wang, Shengping; Zhao, Xiaoli; Yan, Xiaojun
  • Angewandte Chemie, Vol. 131, Issue 1
  • DOI: 10.1002/ange.201811220

Lithium Bond Chemistry in Lithium-Sulfur Batteries
journal, June 2017


Lithium ion battery applications of molybdenum disulfide (MoS 2 ) nanocomposites
journal, January 2014

  • Stephenson, Tyler; Li, Zhi; Olsen, Brian
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42591F

Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System
journal, September 2017

  • Wu, Xianyong; Qi, Yitong; Hong, Jessica J.
  • Angewandte Chemie, Vol. 129, Issue 42
  • DOI: 10.1002/ange.201707473

Natriumionenbatterien für die elektrochemische Energiespeicherung
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie, Vol. 127, Issue 11
  • DOI: 10.1002/ange.201410376

Hard and soft acids and bases, HSAB, part 1: Fundamental principles
journal, September 1968

  • Pearson, Ralph G.
  • Journal of Chemical Education, Vol. 45, Issue 9
  • DOI: 10.1021/ed045p581

Reversible S 0 /MgS x Redox Chemistry in a MgTFSI 2 /MgCl 2 /DME Electrolyte for Rechargeable Mg/S Batteries
journal, September 2017


Reversible S 0 /MgS x Redox Chemistry in a MgTFSI 2 /MgCl 2 /DME Electrolyte for Rechargeable Mg/S Batteries
journal, September 2017

  • Gao, Tao; Hou, Singyuk; Wang, Fei
  • Angewandte Chemie International Edition, Vol. 56, Issue 43
  • DOI: 10.1002/anie.201708241

Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage
journal, June 2018


Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium‐Ion Batteries
journal, April 2019


A Rechargeable Battery with an Iron Metal Anode
journal, March 2019

  • Wu, Xianyong; Markir, Aaron; Xu, Yunkai
  • Advanced Functional Materials, Vol. 29, Issue 20
  • DOI: 10.1002/adfm.201900911

A High Capacity Calcium Primary Cell Based on the Ca-S System
journal, April 2013

  • See, Kimberly A.; Gerbec, Jeffrey A.; Jun, Young-Si
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300160

Textbook errors: Guest column. The solubility product constants of the metallic sulfides
journal, July 1958

  • Waggoner, William H.
  • Journal of Chemical Education, Vol. 35, Issue 7
  • DOI: 10.1021/ed035p339

Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie, Vol. 124, Issue 40
  • DOI: 10.1002/ange.201201429

Slope‐Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na‐Ion Batteries
journal, February 2019


Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

Interaction of CuS and Sulfur in Li-S Battery System
journal, January 2015

  • Sun, Ke; Su, Dong; Zhang, Qing
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.1021514jes

Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage
journal, January 2012

  • Lai, Chen-Ho; Lu, Ming-Yen; Chen, Lih-Juann
  • J. Mater. Chem., Vol. 22, Issue 1
  • DOI: 10.1039/C1JM13879K

Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth
journal, September 2017


Lithium Bond Chemistry in Lithium-Sulfur Batteries
journal, June 2017

  • Hou, Ting-Zheng; Xu, Wen-Tao; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 56, Issue 28
  • DOI: 10.1002/anie.201704324

An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode
journal, August 2018

  • Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli
  • Angewandte Chemie International Edition, Vol. 57, Issue 36
  • DOI: 10.1002/anie.201807121

Hard soft acids bases (HSAB) principle and organic chemistry
journal, February 1975


Regulating Fast Anionic Redox for High-Voltage Aqueous Hydrogen-Ion-based Energy Storage
journal, December 2018

  • Wang, Shengping; Zhao, Xiaoli; Yan, Xiaojun
  • Angewandte Chemie International Edition, Vol. 58, Issue 1
  • DOI: 10.1002/anie.201811220

Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors
journal, November 2015


Air-Stable Copper-Based P2-Na 7/9 Cu 2/9 Fe 1/9 Mn 2/3 O 2 as a New Positive Electrode Material for Sodium-Ion Batteries
journal, May 2015


Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System
journal, September 2017

  • Wu, Xianyong; Qi, Yitong; Hong, Jessica J.
  • Angewandte Chemie International Edition, Vol. 56, Issue 42
  • DOI: 10.1002/anie.201707473

Chemical Synthesis of K 2 S 2 and K 2 S 3 for Probing Electrochemical Mechanisms in K–S Batteries
journal, October 2018


Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage
journal, April 2018


A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte
journal, July 2016

  • Gao, Tao; Li, Xiaogang; Wang, Xiwen
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201603531

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Highly Durable Na 2 V 6 O 16 ·1.63H 2 O Nanowire Cathode for Aqueous Zinc-Ion Battery
journal, February 2018


Slope-Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na-Ion Batteries
journal, February 2019

  • Qi, Yuruo; Lu, Yaxiang; Ding, Feixiang
  • Angewandte Chemie International Edition, Vol. 58, Issue 13
  • DOI: 10.1002/anie.201900005

On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction
journal, February 2012


Understanding electrochemical potentials of cathode materials in rechargeable batteries
journal, March 2016


A Stable, Non‐Corrosive Perfluorinated Pinacolatoborate Mg Electrolyte for Rechargeable Mg Batteries
journal, March 2019


Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions
journal, October 2018


Hard and soft acids and bases, HSAB, part II: Underlying theories
journal, October 1968

  • Pearson, Ralph G.
  • Journal of Chemical Education, Vol. 45, Issue 10
  • DOI: 10.1021/ed045p643

A Dual-Carbon Battery Based on Potassium-Ion Electrolyte
journal, July 2017


Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium
journal, January 2019


Self-Established Rapid Magnesiation/De-Magnesiation Pathways in Binary Selenium-Copper Mixtures with Significantly Enhanced Mg-Ion Storage Reversibility
journal, November 2017

  • Zhang, Zhonghua; Chen, Bingbing; Xu, Huimin
  • Advanced Functional Materials, Vol. 28, Issue 1
  • DOI: 10.1002/adfm.201701718

Surface Chemistry in Cobalt Phosphide-Stabilized Lithium–Sulfur Batteries
journal, January 2018

  • Zhong, Yiren; Yin, Lichang; He, Peng
  • Journal of the American Chemical Society, Vol. 140, Issue 4
  • DOI: 10.1021/jacs.7b11434

Polysulfides Capture-Copper Additive for Long Cycle Life Lithium Sulfur Batteries
journal, October 2016

  • Jia, Lei; Wu, Tianpin; Lu, Jun
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 44
  • DOI: 10.1021/acsami.6b10366

Hydronium-Ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode
journal, February 2017

  • Wang, Xingfeng; Bommier, Clement; Jian, Zelang
  • Angewandte Chemie, Vol. 129, Issue 11
  • DOI: 10.1002/ange.201700148

A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte
journal, July 2016


Electrical Conduction and Phase Transition of Copper Sulfides
journal, August 1973

  • Okamoto, Kimihiko; Kawai, Shichio
  • Japanese Journal of Applied Physics, Vol. 12, Issue 8
  • DOI: 10.1143/JJAP.12.1130

A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
journal, August 2016


The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes
journal, January 2012

  • Wessells, Colin D.; Peddada, Sandeep V.; McDowell, Matthew T.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. A98-A103
  • DOI: 10.1149/2.060202jes

Catalytic oxidation of Li 2 S on the surface of metal sulfides for Li−S batteries
journal, January 2017

  • Zhou, Guangmin; Tian, Hongzhen; Jin, Yang
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 5
  • DOI: 10.1073/pnas.1615837114

Carbon Electrodes for K-Ion Batteries
journal, September 2015

  • Jian, Zelang; Luo, Wei; Ji, Xiulei
  • Journal of the American Chemical Society, Vol. 137, Issue 36
  • DOI: 10.1021/jacs.5b06809

Hydronium-Ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode
journal, February 2017

  • Wang, Xingfeng; Bommier, Clement; Jian, Zelang
  • Angewandte Chemie International Edition, Vol. 56, Issue 11
  • DOI: 10.1002/anie.201700148

Highly reversible zinc metal anode for aqueous batteries
journal, April 2018


Toward a Reversible Calcium‐Sulfur Battery with a Lithium‐Ion Mediation Approach
journal, February 2019

  • Yu, Xingwen; Boyer, Mathew J.; Hwang, Gyeong S.
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201803794

Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions
journal, October 2018

  • Yang, Yuxiang; Zhong, Yiren; Shi, Qiuwei
  • Angewandte Chemie International Edition, Vol. 57, Issue 47
  • DOI: 10.1002/anie.201808311

Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries
journal, January 2019


A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage
journal, June 2018

  • Wang, Xianfu; Xie, Yiming; Tang, Kai
  • Angewandte Chemie International Edition, Vol. 57, Issue 36
  • DOI: 10.1002/anie.201803664

A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions
journal, January 2019

  • Zhang, Bin-Wei; Sheng, Tian; Wang, Yun-Xiao
  • Angewandte Chemie International Edition, Vol. 58, Issue 5
  • DOI: 10.1002/anie.201811080

Long‐Life Room‐Temperature Sodium–Sulfur Batteries by Virtue of Transition‐Metal‐Nanocluster–Sulfur Interactions
journal, January 2019

  • Zhang, Bin‐Wei; Sheng, Tian; Wang, Yun‐Xiao
  • Angewandte Chemie, Vol. 131, Issue 5
  • DOI: 10.1002/ange.201811080

A Stable, Non-Corrosive Perfluorinated Pinacolatoborate Mg Electrolyte for Rechargeable Mg Batteries
journal, March 2019

  • Luo, Jian; Bi, Yujing; Zhang, Liping
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201902009

Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium‐Ion Batteries
journal, May 2019

  • Lu, Yong; Hou, Xuesen; Miao, Licheng
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201902185

Reversible Oxygen Redox Chemistry in Aqueous Zinc‐Ion Batteries
journal, May 2019

  • Wan, Fang; Zhang, Yan; Zhang, Linlin
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201902679

Works referencing / citing this record:

Rechargeable Iron–Sulfur Battery without Polysulfide Shuttling
journal, September 2019

  • Wu, Xianyong; Markir, Aaron; Xu, Yunkai
  • Advanced Energy Materials, Vol. 9, Issue 40
  • DOI: 10.1002/aenm.201902422

Hollow CuS Nanoboxes as Li‐Free Cathode for High‐Rate and Long‐Life Lithium Metal Batteries
journal, January 2020

  • Chen, Yawei; Li, Jianming; Lei, Zhanwu
  • Advanced Energy Materials, Vol. 10, Issue 7
  • DOI: 10.1002/aenm.201903401

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.