DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulating the effect of boron doping in superconducting carbon

Abstract

This study examines the effect of boron doping in superconducting forms of amorphous carbon. By judiciously optimizing boron substitutional sites in simulated amorphous carbon, we predict a superconducting transition temperature near 37 K at 14% boron concentration. Our findings have direct implications for understanding the recently discovered high-$$T_c$$ superconductivity in Q-carbon.

Authors:
 [1];  [2];  [3]
  1. Univ. of Texas, Austin, TX (United States). Center for Computational Materials, Inst. for Computational Engineering and Sciences
  2. Univ. of Texas, Austin, TX (United States). Center for Computational Materials, Inst. for Computational Engineering and Sciences, Dept. of Chemical Engineering, and Dept. of Physics
  3. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1544330
Alternate Identifier(s):
OSTI ID: 1419093
Grant/Contract Number:  
FG02-06ER46286; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 5; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Sakai, Yuki, Chelikowsky, James R., and Cohen, Marvin L. Simulating the effect of boron doping in superconducting carbon. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.054501.
Sakai, Yuki, Chelikowsky, James R., & Cohen, Marvin L. Simulating the effect of boron doping in superconducting carbon. United States. https://doi.org/10.1103/PhysRevB.97.054501
Sakai, Yuki, Chelikowsky, James R., and Cohen, Marvin L. Thu . "Simulating the effect of boron doping in superconducting carbon". United States. https://doi.org/10.1103/PhysRevB.97.054501. https://www.osti.gov/servlets/purl/1544330.
@article{osti_1544330,
title = {Simulating the effect of boron doping in superconducting carbon},
author = {Sakai, Yuki and Chelikowsky, James R. and Cohen, Marvin L.},
abstractNote = {This study examines the effect of boron doping in superconducting forms of amorphous carbon. By judiciously optimizing boron substitutional sites in simulated amorphous carbon, we predict a superconducting transition temperature near 37 K at 14% boron concentration. Our findings have direct implications for understanding the recently discovered high-$T_c$ superconductivity in Q-carbon.},
doi = {10.1103/PhysRevB.97.054501},
journal = {Physical Review B},
number = 5,
volume = 97,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2018},
month = {Thu Feb 01 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Ball-and-stick model of amorphous carbon. Gray and orange spheres represent 3-fold and 4-fold coordinated carbon atoms, respectively. (b) Radial distribution function of amorphous carbon. (c) Density of states (in states/spin/Ry/cell) of undoped amorphous carbon (red solid line) and its projection onto $p$-orbital of 3-fold coordinated carbon atomsmore » (blue dashed line). The vertical dashed line at 0 eV indicates the Fermi level. A Gaussian broadening width and energy grid of 0.05 eV is used.« less

Save / Share:

Works referenced in this record:

Superconductivity at 39 K in magnesium diboride
journal, March 2001

  • Nagamatsu, Jun; Nakagawa, Norimasa; Muranaka, Takahiro
  • Nature, Vol. 410, Issue 6824
  • DOI: 10.1038/35065039

Transition temperature of strong-coupled superconductors reanalyzed
journal, August 1975


Pseudopotentials and Total Energy Calculations
journal, January 1982


Density-functional theory study of the microstructure, electronic structure, and optical properties of amorphous carbon
journal, April 2007


Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Superconductivity at 33 K in CsxRbyC60
journal, July 1991

  • Tanigaki, K.; Ebbesen, T. W.; Saito, S.
  • Nature, Vol. 352, Issue 6332
  • DOI: 10.1038/352222a0

Novel phase of carbon, ferromagnetism, and conversion into diamond
journal, December 2015

  • Narayan, Jagdish; Bhaumik, Anagh
  • Journal of Applied Physics, Vol. 118, Issue 21
  • DOI: 10.1063/1.4936595

Superconducting properties of homoepitaxial CVD diamond
journal, April 2007


The pseudopotential-density functional method applied to nanostructures
journal, March 2000


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Ab initio simulations of the structure of amorphous carbon
journal, January 2000


High-Temperature Superconductivity in Boron-Doped Q-Carbon
journal, May 2017


Ab initio simulations of tetrahedral amorphous carbon
journal, October 1996


Momentum-space formalism for the total energy of solids
journal, November 1979


Inhomogeneous Electron Gas
journal, November 1964


Finite-difference-pseudopotential method: Electronic structure calculations without a basis
journal, February 1994


Superconductivity at 18 K in potassium-doped C60
journal, April 1991

  • Hebard, A. F.; Rosseinsky, M. J.; Haddon, R. C.
  • Nature, Vol. 350, Issue 6319
  • DOI: 10.1038/350600a0

PARSEC – the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures
journal, April 2006

  • Kronik, Leeor; Makmal, Adi; Tiago, Murilo L.
  • physica status solidi (b), Vol. 243, Issue 5
  • DOI: 10.1002/pssb.200541463

Superconductivity in diamond
journal, April 2004

  • Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.
  • Nature, Vol. 428, Issue 6982
  • DOI: 10.1038/nature02449

Constraints on T c for superconductivity in heavily boron-doped diamond
journal, February 2008


Ground State of the Electron Gas by a Stochastic Method
journal, August 1980


Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

What superconducts in sulfur hydrides under pressure and why
journal, February 2015


Superconductivity in Graphitic Compounds
journal, February 1965


Electron-phonon interactions from first principles
journal, February 2017


Superconductivity in the intercalated graphite compounds C6Yb and C6Ca
journal, September 2005

  • Weller, Thomas E.; Ellerby, Mark; Saxena, Siddharth S.
  • Nature Physics, Vol. 1, Issue 1
  • DOI: 10.1038/nphys0010

Real-space pseudopotential method for first principles calculations of general periodic and partially periodic systems
journal, August 2008


Boron spectral density and disorder broadening in B-doped diamond
journal, February 2006


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Efficient pseudopotentials for plane-wave calculations
journal, January 1991


Works referencing / citing this record:

Structure–property correlations in phase-pure B-doped Q-carbon high-temperature superconductor with a record T c = 55 K
journal, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.