DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials

Abstract

Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating engineered analogs of these natural materials is of growing interest, our ability to hierarchically order materials using living cells largely relies on engineered 1D protein filaments. Here, we lay the foundations for bottom-up assembly of engineered living material composites in 2D along the cell body using a synthetic biology approach. We engineer the paracrystalline surface-layer (S-layer) of Caulobacter crescentus to display SpyTag peptides that form irreversible isopeptide bonds to SpyCatcher-modified proteins, nanocrystals, and biopolymers on the extracellular surface. Using flow cytometry and confocal microscopy, we show that attachment of these materials to the cell surface is uniform, specific, and covalent, and its density can be controlled based on the location of the insertion within the S-layer protein, RsaA. Furthermore, we leverage the irreversible nature of this attachment to demonstrate via SDS-PAGE that the engineered S-layer can display a high density of materials, reaching 1 attachment site per 288 nm2. Lastly, we show that ligation of quantum dotsmore » to the cell surface does not impair cell viability and this composite material remains intact over a period of two weeks. Taken together, this work provides a platform for self-organization of soft and hard nanomaterials on a cell surface with precise control over 2D density, composition, and stability of the resulting composite, and is a key step towards building hierarchically-ordered engineered living materials with emergent properties.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Advanced Research Projects Agency - Energy (ARPA-E); National Institutes of Health (NIH)
OSTI Identifier:
1542356
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Synthetic Biology
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2161-5063
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; RsaA; engineered living materials; quantum dots; Caulobacter; biomaterial

Citation Formats

Charrier, Marimikel, Li, Dong, Mann, Victor R., Yun, Lisa, Jani, Sneha, Rad, Behzad, Cohen, Bruce E., Ashby, Paul D., Ryan, Kathleen R., and Ajo-Franklin, Caroline M. Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials. United States: N. p., 2018. Web. doi:10.1021/acssynbio.8b00448.
Charrier, Marimikel, Li, Dong, Mann, Victor R., Yun, Lisa, Jani, Sneha, Rad, Behzad, Cohen, Bruce E., Ashby, Paul D., Ryan, Kathleen R., & Ajo-Franklin, Caroline M. Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials. United States. https://doi.org/10.1021/acssynbio.8b00448
Charrier, Marimikel, Li, Dong, Mann, Victor R., Yun, Lisa, Jani, Sneha, Rad, Behzad, Cohen, Bruce E., Ashby, Paul D., Ryan, Kathleen R., and Ajo-Franklin, Caroline M. Fri . "Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials". United States. https://doi.org/10.1021/acssynbio.8b00448. https://www.osti.gov/servlets/purl/1542356.
@article{osti_1542356,
title = {Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials},
author = {Charrier, Marimikel and Li, Dong and Mann, Victor R. and Yun, Lisa and Jani, Sneha and Rad, Behzad and Cohen, Bruce E. and Ashby, Paul D. and Ryan, Kathleen R. and Ajo-Franklin, Caroline M.},
abstractNote = {Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating engineered analogs of these natural materials is of growing interest, our ability to hierarchically order materials using living cells largely relies on engineered 1D protein filaments. Here, we lay the foundations for bottom-up assembly of engineered living material composites in 2D along the cell body using a synthetic biology approach. We engineer the paracrystalline surface-layer (S-layer) of Caulobacter crescentus to display SpyTag peptides that form irreversible isopeptide bonds to SpyCatcher-modified proteins, nanocrystals, and biopolymers on the extracellular surface. Using flow cytometry and confocal microscopy, we show that attachment of these materials to the cell surface is uniform, specific, and covalent, and its density can be controlled based on the location of the insertion within the S-layer protein, RsaA. Furthermore, we leverage the irreversible nature of this attachment to demonstrate via SDS-PAGE that the engineered S-layer can display a high density of materials, reaching 1 attachment site per 288 nm2. Lastly, we show that ligation of quantum dots to the cell surface does not impair cell viability and this composite material remains intact over a period of two weeks. Taken together, this work provides a platform for self-organization of soft and hard nanomaterials on a cell surface with precise control over 2D density, composition, and stability of the resulting composite, and is a key step towards building hierarchically-ordered engineered living materials with emergent properties.},
doi = {10.1021/acssynbio.8b00448},
journal = {ACS Synthetic Biology},
number = 1,
volume = 8,
place = {United States},
year = {Fri Dec 21 00:00:00 EST 2018},
month = {Fri Dec 21 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Engineering Living Functional Materials
journal, June 2014

  • Chen, Allen Y.; Zhong, Chao; Lu, Timothy K.
  • ACS Synthetic Biology, Vol. 4, Issue 1
  • DOI: 10.1021/sb500113b

Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials
journal, February 2018

  • Nguyen, Peter Q.; Courchesne, Noémie-Manuelle Dorval; Duraj-Thatte, Anna
  • Advanced Materials, Vol. 30, Issue 19
  • DOI: 10.1002/adma.201704847

Synthesis and patterning of tunable multiscale materials with engineered cells
journal, March 2014

  • Chen, Allen Y.; Deng, Zhengtao; Billings, Amanda N.
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3912

A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors
journal, September 2017


Incorporating microorganisms into polymer layers provides bioinspired functional living materials
journal, December 2011

  • Gerber, L. C.; Koehler, F. M.; Grass, R. N.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 1
  • DOI: 10.1073/pnas.1115381109

Microbial cell-surface display
journal, January 2003


Bootstrapped Biocatalysis: Biofilm‐Derived Materials as Reversibly Functionalizable Multienzyme Surfaces
journal, November 2017

  • Nussbaumer, Martin G.; Nguyen, Peter Q.; Tay, Pei K. R.
  • ChemCatChem, Vol. 9, Issue 23
  • DOI: 10.1002/cctc.201701221

Programmable biofilm-based materials from engineered curli nanofibres
journal, September 2014

  • Nguyen, Peter Q.; Botyanszki, Zsofia; Tay, Pei Kun R.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5945

Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic–Organic Interfaces and Electrical Conductivity
journal, December 2016

  • Seker, Urartu Ozgur Safak; Chen, Allen Y.; Citorik, Robert J.
  • ACS Synthetic Biology, Vol. 6, Issue 2
  • DOI: 10.1021/acssynbio.6b00166

Strong underwater adhesives made by self-assembling multi-protein nanofibres
journal, September 2014

  • Zhong, Chao; Gurry, Thomas; Cheng, Allen A.
  • Nature Nanotechnology, Vol. 9, Issue 10
  • DOI: 10.1038/nnano.2014.199

Autotransporter-based cell surface display in Gram-negative bacteria
journal, May 2013


Protein engineering with bacterial display
journal, August 2007


Cell Wall Glycoproteins: Structure and Function
journal, January 1985


Cryo-electron microscopy of the surface protein of Sulfolobus shibatae
journal, February 1993


The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy.
journal, October 1992


SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly
journal, June 2012

  • Baranova, Ekaterina; Fronzes, Rémi; Garcia-Pino, Abel
  • Nature, Vol. 487, Issue 7405
  • DOI: 10.1038/nature11155

Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a
journal, October 1986

  • Messner, Paul; Pum, Dietmar; Sleytr, Uwe B.
  • Journal of Ultrastructure and Molecular Structure Research, Vol. 97, Issue 1-3
  • DOI: 10.1016/S0889-1605(86)80008-8

7Å projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals
journal, December 2007

  • Norville, Julie E.; Kelly, Deborah F.; Knight, Thomas F.
  • Journal of Structural Biology, Vol. 160, Issue 3
  • DOI: 10.1016/j.jsb.2007.06.002

Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense.
journal, November 1991


BslA, the S-layer adhesin of B. anthracis , is a virulence factor for anthrax pathogenesis
journal, January 2010


Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus.
journal, January 1991


S-layers: principles and applications
journal, September 2014

  • Sleytr, Uwe B.; Schuster, Bernhard; Egelseer, Eva-Maria
  • FEMS Microbiology Reviews, Vol. 38, Issue 5
  • DOI: 10.1111/1574-6976.12063

S-layer fusion proteins—construction principles and applications
journal, December 2011


Genetic Engineering of Caulobacter crescentus for Removal of Cadmium from Water
journal, February 2009

  • Patel, Jigar; Zhang, Qiong; McKay, R. Michael L.
  • Applied Biochemistry and Biotechnology, Vol. 160, Issue 1
  • DOI: 10.1007/s12010-009-8540-0

Structure of the hexagonal surface layer on Caulobacter crescentus cells
journal, April 2017

  • Bharat, Tanmay A. M.; Kureisaite-Ciziene, Danguole; Hardy, Gail G.
  • Nature Microbiology, Vol. 2, Issue 7
  • DOI: 10.1038/nmicrobiol.2017.59

Systems Biology of Caulobacter
journal, December 2007


Conserved modular design of an oxygen sensory/signaling network with species-specific output
journal, May 2005

  • Crosson, S.; McGrath, P. T.; Stephens, C.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 22
  • DOI: 10.1073/pnas.0503022102

Analysis of the Intact Surface Layer of Caulobacter crescentus by Cryo-Electron Tomography
journal, September 2010

  • Amat, F.; Comolli, L. R.; Nomellini, J. F.
  • Journal of Bacteriology, Vol. 192, Issue 22
  • DOI: 10.1128/JB.00747-10

Cell‐surface display of a Pseudomonas aeruginosa strain K pilin peptide within the paracrystalline S‐layer of Caulobacter crescentus
journal, October 1997


Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags
journal, February 2016

  • Park, Dan M.; Reed, David W.; Yung, Mimi C.
  • Environmental Science & Technology, Vol. 50, Issue 5
  • DOI: 10.1021/acs.est.5b06129

Evaluating secretion and surface attachment of SapA, an S-layer-associated metalloprotease of Caulobacter crescentus
journal, May 2012

  • Gandham, Lyngrace; Nomellini, John F.; Smit, John
  • Archives of Microbiology, Vol. 194, Issue 10
  • DOI: 10.1007/s00203-012-0819-9

Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin
journal, February 2012

  • Zakeri, B.; Fierer, J. O.; Celik, E.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 12
  • DOI: 10.1073/pnas.1115485109

Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher
journal, December 2015


Analysis of high-level S-layer protein secretion in Caulobacter crescentus
journal, June 2010

  • Lau, Janny Ho Yu; Nomellini, John F.; Smit, John
  • Canadian Journal of Microbiology, Vol. 56, Issue 6
  • DOI: 10.1139/W10-036

S-Layer-Mediated Display of the Immunoglobulin G-Binding Domain of Streptococcal Protein G on the Surface of Caulobacter crescentus: Development of an Immunoactive Reagent
journal, March 2007

  • Nomellini, J. F.; Duncan, G.; Dorocicz, I. R.
  • Applied and Environmental Microbiology, Vol. 73, Issue 10
  • DOI: 10.1128/AEM.02900-06

Programmed loading and rapid purification of engineered bacterial microcompartment shells
journal, July 2018


Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In Vivo
journal, August 2015


A monomeric red fluorescent protein
journal, June 2002

  • Campbell, R. E.; Tour, O.; Palmer, A. E.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 12, p. 7877-7882
  • DOI: 10.1073/pnas.082243699

Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry
journal, July 2014

  • Sun, F.; Zhang, W. -B.; Mahdavi, A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 31
  • DOI: 10.1073/pnas.1401291111

Covalent Protein Labeling and Improved Single-Molecule Optical Properties of Aqueous CdSe/CdS Quantum Dots
journal, June 2017


Azide–Alkyne Click Conjugation on Quantum Dots by Selective Copper Coordination
journal, April 2018


Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
journal, December 2015


Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1
journal, September 2006

  • Rothfuss, Heather; Lara, Jimmie C.; Schmid, Amy K.
  • Microbiology, Vol. 152, Issue 9
  • DOI: 10.1099/mic.0.28971-0

Role of S-layer proteins in bacteria
journal, September 2015

  • Gerbino, E.; Carasi, P.; Mobili, P.
  • World Journal of Microbiology and Biotechnology, Vol. 31, Issue 12
  • DOI: 10.1007/s11274-015-1952-9

Participation of a cyanobacterial S layer in fine-grain mineral formation.
journal, December 1992


Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects
journal, February 2015

  • Martín, María José; Lara-Villoslada, Federico; Ruiz, María Adolfina
  • Innovative Food Science & Emerging Technologies, Vol. 27
  • DOI: 10.1016/j.ifset.2014.09.010

Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review
journal, March 2013

  • Schoebitz, Mauricio; López, Maria D.; Roldán, Antonio
  • Agronomy for Sustainable Development, Vol. 33, Issue 4
  • DOI: 10.1007/s13593-013-0142-0

Bioaugmentation and its application in wastewater treatment: A review
journal, December 2015


Mechanical interactions between bacteria and hydrogels
journal, July 2018


Type-III secretion filaments as scaffolds for inorganic nanostructures
journal, January 2016

  • Azam, Anum; Tullman-Ercek, Danielle
  • Journal of The Royal Society Interface, Vol. 13, Issue 114
  • DOI: 10.1098/rsif.2015.0938

Two Outer Membrane Proteins Are Required for Maximal Type I Secretion of the Caulobacter crescentus S-Layer Protein
journal, November 2004


NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Works referencing / citing this record:

Resilient living materials built by printing bacterial spores
journal, December 2019

  • González, Lina M.; Mukhitov, Nikita; Voigt, Christopher A.
  • Nature Chemical Biology, Vol. 16, Issue 2
  • DOI: 10.1038/s41589-019-0412-5

Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications
journal, July 2019

  • Wang, Xinyu; Pu, Jiahua; Liu, Yi
  • National Science Review, Vol. 6, Issue 5
  • DOI: 10.1093/nsr/nwz104

Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly
journal, June 2019


Engineering microbes for targeted strikes against human pathogens
journal, May 2018

  • Hwang, In Young; Lee, Hui Ling; Huang, James Guoxian
  • Cellular and Molecular Life Sciences, Vol. 75, Issue 15
  • DOI: 10.1007/s00018-018-2827-7

In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer
journal, January 2020


Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly
journal, June 2019